{"title":"关于(1,2)-彩虹连接数的一些结果","authors":"Yingbin Ma, Yuyu Zhao","doi":"10.1016/j.dam.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>In Li et al., (2018), proved the sharp upper bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> and left a problem of the sharp lower bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>. In this article, we solve this problem and show some sharp examples. In Doan and Do (2023), proved that <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for a graph <span><math><mi>G</mi></math></span> with large clique number <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>. Then we completely determine the <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>-rainbow connection number of <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 231-238"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on (1,2)-rainbow connection number\",\"authors\":\"Yingbin Ma, Yuyu Zhao\",\"doi\":\"10.1016/j.dam.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Li et al., (2018), proved the sharp upper bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> and left a problem of the sharp lower bound of <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>. In this article, we solve this problem and show some sharp examples. In Doan and Do (2023), proved that <span><math><mrow><mi>r</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn></mrow></math></span> for a graph <span><math><mi>G</mi></math></span> with large clique number <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>. Then we completely determine the <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>-rainbow connection number of <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 231-238\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002550\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
Li et al.,(2018)证明了rc1,2(G)+rc1,2(G¯)的锐上界,并留下了rc1,2(G)+rc1,2(G¯)的锐下界问题。在本文中,我们解决了这个问题,并给出了一些尖锐的例子。在Doan和Do(2023)中,证明了对于团数ω(G)≥n−3的大图G, rc1,2(G)≤3。然后我们完全确定了ω(G)≥n−3时G的(1,2)-彩虹连接数。
In Li et al., (2018), proved the sharp upper bound of and left a problem of the sharp lower bound of . In this article, we solve this problem and show some sharp examples. In Doan and Do (2023), proved that for a graph with large clique number . Then we completely determine the -rainbow connection number of with .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.