增强环氧基纳米复合材料的介电性能与氧化钇纳米颗粒在高压绝缘中的应用

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ammar Alsoud , Adel A. Shaheen , Pavel Tofel , Alexandr Knápek , Dinara Sobola
{"title":"增强环氧基纳米复合材料的介电性能与氧化钇纳米颗粒在高压绝缘中的应用","authors":"Ammar Alsoud ,&nbsp;Adel A. Shaheen ,&nbsp;Pavel Tofel ,&nbsp;Alexandr Knápek ,&nbsp;Dinara Sobola","doi":"10.1016/j.mseb.2025.118407","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the enhancement of dielectric properties in epoxy resin-based nanocomposites by incorporating yttrium oxide nanoparticles (<span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span>) for high-voltage insulation applications. Nanocomposites with <span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> concentrations of 3, 6, 9, 12, and 15 wt % were fabricated and characterized. Dielectric relaxation spectroscopy (10<sup>−2</sup>–10<sup>6</sup> Hz) was used to evaluate key parameters—including permittivity, conductivity, activation energy, and conduction mechanisms—across temperatures ranging from 30 to 170 °C. Structural and morphological analyses via scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction (XRD) confirmed uniform nanoparticle dispersion in the epoxy matrix, with minor agglomeration observed at higher filler loadings. The 6 wt % nanocomposite exhibited optimal performance, demonstrating the lowest permittivity, conductivity, and activation energy (9.5 meV). In contrast, increasing the <span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> concentration to 15 wt % raised the activation energy to 11 meV and increased permittivity. Conductivity showed a temperature-dependent rise, consistent with thermal activation. A transition in the conduction mechanism from quantum mechanical tunneling to correlated barrier hopping (CBH) occurred at 110 °C, accompanied by a decrease in permittivity and a shift in crossover frequency (toward lower frequencies at reduced temperatures and higher frequencies at elevated temperatures). The β-relaxation mode remained dominant across the entire temperature range, highlighting the potential of epoxy/<span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> nanocomposites as advanced dielectric materials for high-voltage systems. These findings underscore a promising balance between thermal stability and dielectric efficiency.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"320 ","pages":"Article 118407"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing dielectric properties of epoxy-based nanocomposites reinforced with yttrium oxide (Y2O3) nanoparticles for high-voltage insulation applications\",\"authors\":\"Ammar Alsoud ,&nbsp;Adel A. Shaheen ,&nbsp;Pavel Tofel ,&nbsp;Alexandr Knápek ,&nbsp;Dinara Sobola\",\"doi\":\"10.1016/j.mseb.2025.118407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the enhancement of dielectric properties in epoxy resin-based nanocomposites by incorporating yttrium oxide nanoparticles (<span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span>) for high-voltage insulation applications. Nanocomposites with <span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> concentrations of 3, 6, 9, 12, and 15 wt % were fabricated and characterized. Dielectric relaxation spectroscopy (10<sup>−2</sup>–10<sup>6</sup> Hz) was used to evaluate key parameters—including permittivity, conductivity, activation energy, and conduction mechanisms—across temperatures ranging from 30 to 170 °C. Structural and morphological analyses via scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction (XRD) confirmed uniform nanoparticle dispersion in the epoxy matrix, with minor agglomeration observed at higher filler loadings. The 6 wt % nanocomposite exhibited optimal performance, demonstrating the lowest permittivity, conductivity, and activation energy (9.5 meV). In contrast, increasing the <span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> concentration to 15 wt % raised the activation energy to 11 meV and increased permittivity. Conductivity showed a temperature-dependent rise, consistent with thermal activation. A transition in the conduction mechanism from quantum mechanical tunneling to correlated barrier hopping (CBH) occurred at 110 °C, accompanied by a decrease in permittivity and a shift in crossover frequency (toward lower frequencies at reduced temperatures and higher frequencies at elevated temperatures). The β-relaxation mode remained dominant across the entire temperature range, highlighting the potential of epoxy/<span><math><mrow><msub><mi>Y</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> nanocomposites as advanced dielectric materials for high-voltage systems. These findings underscore a promising balance between thermal stability and dielectric efficiency.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"320 \",\"pages\":\"Article 118407\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725004313\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过添加氧化钇纳米颗粒(Y2O3)来增强环氧树脂基纳米复合材料的介电性能,用于高压绝缘应用。制备了Y2O3浓度分别为3、6、9、12、15 wt %的纳米复合材料,并对其进行了表征。介质弛豫光谱(10−2-106 Hz)用于评估关键参数,包括介电常数,电导率,活化能和传导机制,温度范围为30至170°C。通过扫描电子显微镜、能量色散x射线能谱(SEM-EDX)和x射线衍射(XRD)进行的结构和形态分析证实,纳米颗粒在环氧树脂基体中分散均匀,在填料含量较高时观察到少量团聚。6 wt %的纳米复合材料表现出最佳的性能,具有最低的介电常数、电导率和活化能(9.5 meV)。相比之下,当Y2O3浓度增加到15 wt %时,活化能增加到11 meV,介电常数增加。电导率随温度升高,与热活化一致。在110°C时,传导机制发生了从量子力学隧穿到相关势垒跳变(CBH)的转变,伴随着介电常数的降低和交叉频率的移动(在温度降低时向低频移动,在温度升高时向高频移动)。β-弛豫模式在整个温度范围内仍然占主导地位,突出了环氧/Y2O3纳米复合材料作为高压系统先进介电材料的潜力。这些发现强调了热稳定性和介电效率之间有希望的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing dielectric properties of epoxy-based nanocomposites reinforced with yttrium oxide (Y2O3) nanoparticles for high-voltage insulation applications
This study investigates the enhancement of dielectric properties in epoxy resin-based nanocomposites by incorporating yttrium oxide nanoparticles (Y2O3) for high-voltage insulation applications. Nanocomposites with Y2O3 concentrations of 3, 6, 9, 12, and 15 wt % were fabricated and characterized. Dielectric relaxation spectroscopy (10−2–106 Hz) was used to evaluate key parameters—including permittivity, conductivity, activation energy, and conduction mechanisms—across temperatures ranging from 30 to 170 °C. Structural and morphological analyses via scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction (XRD) confirmed uniform nanoparticle dispersion in the epoxy matrix, with minor agglomeration observed at higher filler loadings. The 6 wt % nanocomposite exhibited optimal performance, demonstrating the lowest permittivity, conductivity, and activation energy (9.5 meV). In contrast, increasing the Y2O3 concentration to 15 wt % raised the activation energy to 11 meV and increased permittivity. Conductivity showed a temperature-dependent rise, consistent with thermal activation. A transition in the conduction mechanism from quantum mechanical tunneling to correlated barrier hopping (CBH) occurred at 110 °C, accompanied by a decrease in permittivity and a shift in crossover frequency (toward lower frequencies at reduced temperatures and higher frequencies at elevated temperatures). The β-relaxation mode remained dominant across the entire temperature range, highlighting the potential of epoxy/Y2O3 nanocomposites as advanced dielectric materials for high-voltage systems. These findings underscore a promising balance between thermal stability and dielectric efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信