多目标性能氧化玻璃的组成设计

IF 3.2 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Junhao Xing , Ang Qiao , Fucheng Wu , Yonggang Haung , Haizheng Tao
{"title":"多目标性能氧化玻璃的组成设计","authors":"Junhao Xing ,&nbsp;Ang Qiao ,&nbsp;Fucheng Wu ,&nbsp;Yonggang Haung ,&nbsp;Haizheng Tao","doi":"10.1016/j.jnoncrysol.2025.123613","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenges of multi-objective property optimization in oxide glass design, here we developed an interpretable machine learning framework leveraging the SciGlass database to predict glass compositions with tailored combinations of refractive index (<em>n</em>), softening temperature (<em>T</em><sub>littletons</sub>), and thermal expansion coefficient (<em>CTE</em>). Three distinct algorithms—Random Forest (RF), Linear Regression (LR), and Multilayer Perceptron (MLP)—were systematically trained to capture composition-property relationships. By defining oxide component constraints and permissible concentration ranges, the framework generated a combinatorial space containing ∼500 million potential formulations. Due to its superior predictive accuracy and robustness, the optimized RF model was selected to conduct property predictions across this extensive sample space. Through iterative filtering (<em>n</em> ≤ 1.5, <em>CTE</em>&lt;8.7 × 10⁻⁶/ °C, and <em>T</em><sub>littletons</sub> between 700–790 °C), 516,325 candidate formulations meeting stringent multi-property criteria were identified. Experimental validation of four compositionally distinct glasses confirmed the model's predictive reliability, with the maximum deviation &lt; 5 % from theoretical property values. This methodology enables concurrent optimization of optical, thermal, and mechanical properties, significantly accelerating the development cycle of functional glasses while reducing traditional trial-and-error costs.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"664 ","pages":"Article 123613"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositional design of oxide glass with multi-target performances\",\"authors\":\"Junhao Xing ,&nbsp;Ang Qiao ,&nbsp;Fucheng Wu ,&nbsp;Yonggang Haung ,&nbsp;Haizheng Tao\",\"doi\":\"10.1016/j.jnoncrysol.2025.123613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the challenges of multi-objective property optimization in oxide glass design, here we developed an interpretable machine learning framework leveraging the SciGlass database to predict glass compositions with tailored combinations of refractive index (<em>n</em>), softening temperature (<em>T</em><sub>littletons</sub>), and thermal expansion coefficient (<em>CTE</em>). Three distinct algorithms—Random Forest (RF), Linear Regression (LR), and Multilayer Perceptron (MLP)—were systematically trained to capture composition-property relationships. By defining oxide component constraints and permissible concentration ranges, the framework generated a combinatorial space containing ∼500 million potential formulations. Due to its superior predictive accuracy and robustness, the optimized RF model was selected to conduct property predictions across this extensive sample space. Through iterative filtering (<em>n</em> ≤ 1.5, <em>CTE</em>&lt;8.7 × 10⁻⁶/ °C, and <em>T</em><sub>littletons</sub> between 700–790 °C), 516,325 candidate formulations meeting stringent multi-property criteria were identified. Experimental validation of four compositionally distinct glasses confirmed the model's predictive reliability, with the maximum deviation &lt; 5 % from theoretical property values. This methodology enables concurrent optimization of optical, thermal, and mechanical properties, significantly accelerating the development cycle of functional glasses while reducing traditional trial-and-error costs.</div></div>\",\"PeriodicalId\":16461,\"journal\":{\"name\":\"Journal of Non-crystalline Solids\",\"volume\":\"664 \",\"pages\":\"Article 123613\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-crystalline Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022309325002285\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309325002285","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决氧化物玻璃设计中多目标性能优化的挑战,我们开发了一个可解释的机器学习框架,利用SciGlass数据库,通过折射率(n)、软化温度(Tlittletons)和热膨胀系数(CTE)的定制组合来预测玻璃成分。三种不同的算法——随机森林(RF)、线性回归(LR)和多层感知器(MLP)——被系统地训练以捕获成分-属性关系。通过定义氧化物成分约束和允许的浓度范围,该框架生成了一个包含~ 5亿个潜在配方的组合空间。由于其优越的预测精度和鲁棒性,优化的RF模型被选择在这个广泛的样本空间进行属性预测。通过迭代滤波(n≤1.5,CTE<8.7 × 10⁻26 /°C, tlittleons在700-790°C之间),确定了516,325个符合严格的多属性标准的候选配方。四种不同成分玻璃的实验验证证实了该模型的预测可靠性,最大偏差<;5%的理论财产价值。这种方法可以同时优化光学、热学和机械性能,显著加快功能性玻璃的开发周期,同时降低传统的试错成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional design of oxide glass with multi-target performances
To address the challenges of multi-objective property optimization in oxide glass design, here we developed an interpretable machine learning framework leveraging the SciGlass database to predict glass compositions with tailored combinations of refractive index (n), softening temperature (Tlittletons), and thermal expansion coefficient (CTE). Three distinct algorithms—Random Forest (RF), Linear Regression (LR), and Multilayer Perceptron (MLP)—were systematically trained to capture composition-property relationships. By defining oxide component constraints and permissible concentration ranges, the framework generated a combinatorial space containing ∼500 million potential formulations. Due to its superior predictive accuracy and robustness, the optimized RF model was selected to conduct property predictions across this extensive sample space. Through iterative filtering (n ≤ 1.5, CTE<8.7 × 10⁻⁶/ °C, and Tlittletons between 700–790 °C), 516,325 candidate formulations meeting stringent multi-property criteria were identified. Experimental validation of four compositionally distinct glasses confirmed the model's predictive reliability, with the maximum deviation < 5 % from theoretical property values. This methodology enables concurrent optimization of optical, thermal, and mechanical properties, significantly accelerating the development cycle of functional glasses while reducing traditional trial-and-error costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Non-crystalline Solids
Journal of Non-crystalline Solids 工程技术-材料科学:硅酸盐
CiteScore
6.50
自引率
11.40%
发文量
576
审稿时长
35 days
期刊介绍: The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid. In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信