{"title":"基于MoSi2N4单层的亚10nm节能隧道场效应管","authors":"Hamidreza Ghanbari Khorram , Samad Sheikhaei , Shoeib Babaee Touski , Alireza Kokabi","doi":"10.1016/j.jpcs.2025.112796","DOIUrl":null,"url":null,"abstract":"<div><div>The MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayer is investigated as a channel material for sub-10 nm Tunnel Field-Effect Transistors (TFETs) to overcome the limitations of CMOS technology in power consumption and scaling. Following the Non-Equilibrium Green’s Function (NEGF) formalism, the study investigates key performance parameters that comprise ON-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>), OFF-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>OFF</mtext></mrow></msub></math></span>), ON/OFF current ratio, and sub-threshold swing (<span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span>). Tensile strain (+2%) enhances <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>, while compressive strain (-2%) reduces <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>OFF</mtext></mrow></msub></math></span> significantly, leading to a very high ON/OFF ratio. The <span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span> is measured around 14 mV/dec below the Boltzmann limit of conventional FETs. The <span><math><mi>n</mi></math></span>-TFET and <span><math><mi>p</mi></math></span>-TFET structures are explored through I–V characteristics, and an inverter gate is examined, demonstrating the potential of the material for logic applications. The obtained low OFF-current and <span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span> values for sub-10 nm channel length suggest that MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based TFET is a promising option for the next-generation nanoelectronics with high performance, low static power consumption, and energy efficiency.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"206 ","pages":"Article 112796"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-10 nm energy-efficient tunnel FETs based on MoSi2N4 monolayer\",\"authors\":\"Hamidreza Ghanbari Khorram , Samad Sheikhaei , Shoeib Babaee Touski , Alireza Kokabi\",\"doi\":\"10.1016/j.jpcs.2025.112796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> monolayer is investigated as a channel material for sub-10 nm Tunnel Field-Effect Transistors (TFETs) to overcome the limitations of CMOS technology in power consumption and scaling. Following the Non-Equilibrium Green’s Function (NEGF) formalism, the study investigates key performance parameters that comprise ON-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>), OFF-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>OFF</mtext></mrow></msub></math></span>), ON/OFF current ratio, and sub-threshold swing (<span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span>). Tensile strain (+2%) enhances <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>ON</mtext></mrow></msub></math></span>, while compressive strain (-2%) reduces <span><math><msub><mrow><mi>I</mi></mrow><mrow><mtext>OFF</mtext></mrow></msub></math></span> significantly, leading to a very high ON/OFF ratio. The <span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span> is measured around 14 mV/dec below the Boltzmann limit of conventional FETs. The <span><math><mi>n</mi></math></span>-TFET and <span><math><mi>p</mi></math></span>-TFET structures are explored through I–V characteristics, and an inverter gate is examined, demonstrating the potential of the material for logic applications. The obtained low OFF-current and <span><math><mrow><mi>S</mi><mi>S</mi></mrow></math></span> values for sub-10 nm channel length suggest that MoSi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based TFET is a promising option for the next-generation nanoelectronics with high performance, low static power consumption, and energy efficiency.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"206 \",\"pages\":\"Article 112796\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002483\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002483","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sub-10 nm energy-efficient tunnel FETs based on MoSi2N4 monolayer
The MoSiN monolayer is investigated as a channel material for sub-10 nm Tunnel Field-Effect Transistors (TFETs) to overcome the limitations of CMOS technology in power consumption and scaling. Following the Non-Equilibrium Green’s Function (NEGF) formalism, the study investigates key performance parameters that comprise ON-state current (), OFF-state current (), ON/OFF current ratio, and sub-threshold swing (). Tensile strain (+2%) enhances , while compressive strain (-2%) reduces significantly, leading to a very high ON/OFF ratio. The is measured around 14 mV/dec below the Boltzmann limit of conventional FETs. The -TFET and -TFET structures are explored through I–V characteristics, and an inverter gate is examined, demonstrating the potential of the material for logic applications. The obtained low OFF-current and values for sub-10 nm channel length suggest that MoSiN-based TFET is a promising option for the next-generation nanoelectronics with high performance, low static power consumption, and energy efficiency.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.