Nutan Shukla , Ratnesh Das , Carol Yazbleydy Cárdenas Rodriguez , Elizaveta Mukhanova , Alexander Soldatov , Aadil Bathla , Indu kumari , Nitin Hauserao , Sabrina Belbekhouche
{"title":"优化近红外活化金纳米结构用于靶向联合癌症治疗","authors":"Nutan Shukla , Ratnesh Das , Carol Yazbleydy Cárdenas Rodriguez , Elizaveta Mukhanova , Alexander Soldatov , Aadil Bathla , Indu kumari , Nitin Hauserao , Sabrina Belbekhouche","doi":"10.1016/j.colsurfb.2025.114687","DOIUrl":null,"url":null,"abstract":"<div><div>The application of near-infrared (NIR)-activated gold nanostructures, particularly gold nanostars (AuNSs) and gold nanorods (AuNRs), has emerged as a promising strategy in targeted combination cancer therapy (Figure 1). These nanostructures leverage their unique localized surface plasmon resonance (LSPR) properties, which enable effective absorption and conversion of NIR light into heat, facilitating photothermal therapy (PTT) to selectively destroy cancer cells. Recent advancements in the synthesis and functionalization of AuNSs and AuNRs have enhanced their biocompatibility, stability, and therapeutic efficacy. This review highlights the mechanisms by which these gold nanostructures can be optimized for synergistic effects when combined with other therapeutic modalities such as chemotherapy and photodynamic therapy (PDT). We discuss the importance of surface modifications that improve tumor targeting and retention, as well as the potential to overcome limitations associated with conventional therapies. The integration of AuNSs and AuNRs into multi-faceted treatment regimens represents a significant step forward in the development of effective cancer therapies, aiming to maximize therapeutic outcomes while minimizing side effects.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114687"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing near-infrared-activated gold nanostructures for targeted combination cancer therapy\",\"authors\":\"Nutan Shukla , Ratnesh Das , Carol Yazbleydy Cárdenas Rodriguez , Elizaveta Mukhanova , Alexander Soldatov , Aadil Bathla , Indu kumari , Nitin Hauserao , Sabrina Belbekhouche\",\"doi\":\"10.1016/j.colsurfb.2025.114687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of near-infrared (NIR)-activated gold nanostructures, particularly gold nanostars (AuNSs) and gold nanorods (AuNRs), has emerged as a promising strategy in targeted combination cancer therapy (Figure 1). These nanostructures leverage their unique localized surface plasmon resonance (LSPR) properties, which enable effective absorption and conversion of NIR light into heat, facilitating photothermal therapy (PTT) to selectively destroy cancer cells. Recent advancements in the synthesis and functionalization of AuNSs and AuNRs have enhanced their biocompatibility, stability, and therapeutic efficacy. This review highlights the mechanisms by which these gold nanostructures can be optimized for synergistic effects when combined with other therapeutic modalities such as chemotherapy and photodynamic therapy (PDT). We discuss the importance of surface modifications that improve tumor targeting and retention, as well as the potential to overcome limitations associated with conventional therapies. The integration of AuNSs and AuNRs into multi-faceted treatment regimens represents a significant step forward in the development of effective cancer therapies, aiming to maximize therapeutic outcomes while minimizing side effects.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"253 \",\"pages\":\"Article 114687\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525001948\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001948","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Optimizing near-infrared-activated gold nanostructures for targeted combination cancer therapy
The application of near-infrared (NIR)-activated gold nanostructures, particularly gold nanostars (AuNSs) and gold nanorods (AuNRs), has emerged as a promising strategy in targeted combination cancer therapy (Figure 1). These nanostructures leverage their unique localized surface plasmon resonance (LSPR) properties, which enable effective absorption and conversion of NIR light into heat, facilitating photothermal therapy (PTT) to selectively destroy cancer cells. Recent advancements in the synthesis and functionalization of AuNSs and AuNRs have enhanced their biocompatibility, stability, and therapeutic efficacy. This review highlights the mechanisms by which these gold nanostructures can be optimized for synergistic effects when combined with other therapeutic modalities such as chemotherapy and photodynamic therapy (PDT). We discuss the importance of surface modifications that improve tumor targeting and retention, as well as the potential to overcome limitations associated with conventional therapies. The integration of AuNSs and AuNRs into multi-faceted treatment regimens represents a significant step forward in the development of effective cancer therapies, aiming to maximize therapeutic outcomes while minimizing side effects.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.