{"title":"功能梯度介电弹性体的不等双轴拉伸状态","authors":"Sankalp Gour , Deepak Kumar , Aman Khurana","doi":"10.1016/j.ijengsci.2025.104291","DOIUrl":null,"url":null,"abstract":"<div><div>A thin dielectric elastomeric (DE) plate with thickness gradients deforms and wrinkles under applied voltages. Such wrinkling, with regular periodic patterns in thin functionally graded DEs, occurs to relax in-plane compressive stresses through out-of-plane deformations. These functionally graded DE-based soft actuators, primarily used in soft robotic applications, exhibit highly localized point loads compared to non-graded soft actuators. DE-based soft actuators frequently exhibit a variety of instabilities, which may adversely affect their functioning and trigger device failure. Conversely, fine-tuned wrinkles can be utilized proactively in specific applications, necessitating an intentional transformation with directional gradients and the truncation of biaxial deformations. This paper presents an experimentally verified continuum physics-based model under a special case for unequal-biaxial deformation in functionally graded DEs. The proposed model integrates classical tension field theory to predict thresholds in taut domains within the plane of principal stretches. The model solutions provide insight into the deviations of taut domains influenced by the graded parameter and the biaxiality ratio in unequal-biaxial deformations of wrinkle formations in this material class.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"214 ","pages":"Article 104291"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unequal-biaxial taut states of functionally graded dielectric elastomers\",\"authors\":\"Sankalp Gour , Deepak Kumar , Aman Khurana\",\"doi\":\"10.1016/j.ijengsci.2025.104291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A thin dielectric elastomeric (DE) plate with thickness gradients deforms and wrinkles under applied voltages. Such wrinkling, with regular periodic patterns in thin functionally graded DEs, occurs to relax in-plane compressive stresses through out-of-plane deformations. These functionally graded DE-based soft actuators, primarily used in soft robotic applications, exhibit highly localized point loads compared to non-graded soft actuators. DE-based soft actuators frequently exhibit a variety of instabilities, which may adversely affect their functioning and trigger device failure. Conversely, fine-tuned wrinkles can be utilized proactively in specific applications, necessitating an intentional transformation with directional gradients and the truncation of biaxial deformations. This paper presents an experimentally verified continuum physics-based model under a special case for unequal-biaxial deformation in functionally graded DEs. The proposed model integrates classical tension field theory to predict thresholds in taut domains within the plane of principal stretches. The model solutions provide insight into the deviations of taut domains influenced by the graded parameter and the biaxiality ratio in unequal-biaxial deformations of wrinkle formations in this material class.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"214 \",\"pages\":\"Article 104291\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722525000783\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525000783","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Unequal-biaxial taut states of functionally graded dielectric elastomers
A thin dielectric elastomeric (DE) plate with thickness gradients deforms and wrinkles under applied voltages. Such wrinkling, with regular periodic patterns in thin functionally graded DEs, occurs to relax in-plane compressive stresses through out-of-plane deformations. These functionally graded DE-based soft actuators, primarily used in soft robotic applications, exhibit highly localized point loads compared to non-graded soft actuators. DE-based soft actuators frequently exhibit a variety of instabilities, which may adversely affect their functioning and trigger device failure. Conversely, fine-tuned wrinkles can be utilized proactively in specific applications, necessitating an intentional transformation with directional gradients and the truncation of biaxial deformations. This paper presents an experimentally verified continuum physics-based model under a special case for unequal-biaxial deformation in functionally graded DEs. The proposed model integrates classical tension field theory to predict thresholds in taut domains within the plane of principal stretches. The model solutions provide insight into the deviations of taut domains influenced by the graded parameter and the biaxiality ratio in unequal-biaxial deformations of wrinkle formations in this material class.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.