Meng Zhang, Yina Guo, Haidong Wang, Hong Shangguan
{"title":"基于注意引导的动态图卷积网络的自适应目标检测","authors":"Meng Zhang, Yina Guo, Haidong Wang, Hong Shangguan","doi":"10.1016/j.cviu.2025.104386","DOIUrl":null,"url":null,"abstract":"<div><div>Various classifiers based on convolutional neural networks have been successfully applied to image classification in object detection. However, object detection is much more sophisticated and most classifiers used in this context exhibit limitations in capturing contextual information, particularly in scenarios with complex backgrounds or occlusions. Additionally, they lack spatial awareness, resulting in the loss of spatial structure and inadequate modeling of object details and context. In this paper, we propose an adaptive object detection approach using an attention-guided dynamic graph convolutional network (AODGCN). AODGCN represents images as graphs, enabling the capture of object properties such as connectivity, proximity, and hierarchical relationships. Attention mechanisms guide the model to focus on informative regions, highlighting relevant features while suppressing background information. This attention-guided approach enhances the model’s ability to capture discriminative features. Furthermore, the dynamic graph convolutional network (D-GCN) adjusts the receptive field size and weight coefficients based on object characteristics, enabling adaptive detection of objects with varying sizes. The achieved results demonstrate the effectiveness of AODGCN on the MS-COCO 2017 dataset, with a significant improvement of 1.6% in terms of mean average precision (mAP) compared to state-of-the-art algorithms.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"258 ","pages":"Article 104386"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AODGCN: Adaptive object detection with attention-guided dynamic graph convolutional network\",\"authors\":\"Meng Zhang, Yina Guo, Haidong Wang, Hong Shangguan\",\"doi\":\"10.1016/j.cviu.2025.104386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Various classifiers based on convolutional neural networks have been successfully applied to image classification in object detection. However, object detection is much more sophisticated and most classifiers used in this context exhibit limitations in capturing contextual information, particularly in scenarios with complex backgrounds or occlusions. Additionally, they lack spatial awareness, resulting in the loss of spatial structure and inadequate modeling of object details and context. In this paper, we propose an adaptive object detection approach using an attention-guided dynamic graph convolutional network (AODGCN). AODGCN represents images as graphs, enabling the capture of object properties such as connectivity, proximity, and hierarchical relationships. Attention mechanisms guide the model to focus on informative regions, highlighting relevant features while suppressing background information. This attention-guided approach enhances the model’s ability to capture discriminative features. Furthermore, the dynamic graph convolutional network (D-GCN) adjusts the receptive field size and weight coefficients based on object characteristics, enabling adaptive detection of objects with varying sizes. The achieved results demonstrate the effectiveness of AODGCN on the MS-COCO 2017 dataset, with a significant improvement of 1.6% in terms of mean average precision (mAP) compared to state-of-the-art algorithms.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"258 \",\"pages\":\"Article 104386\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314225001092\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001092","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AODGCN: Adaptive object detection with attention-guided dynamic graph convolutional network
Various classifiers based on convolutional neural networks have been successfully applied to image classification in object detection. However, object detection is much more sophisticated and most classifiers used in this context exhibit limitations in capturing contextual information, particularly in scenarios with complex backgrounds or occlusions. Additionally, they lack spatial awareness, resulting in the loss of spatial structure and inadequate modeling of object details and context. In this paper, we propose an adaptive object detection approach using an attention-guided dynamic graph convolutional network (AODGCN). AODGCN represents images as graphs, enabling the capture of object properties such as connectivity, proximity, and hierarchical relationships. Attention mechanisms guide the model to focus on informative regions, highlighting relevant features while suppressing background information. This attention-guided approach enhances the model’s ability to capture discriminative features. Furthermore, the dynamic graph convolutional network (D-GCN) adjusts the receptive field size and weight coefficients based on object characteristics, enabling adaptive detection of objects with varying sizes. The achieved results demonstrate the effectiveness of AODGCN on the MS-COCO 2017 dataset, with a significant improvement of 1.6% in terms of mean average precision (mAP) compared to state-of-the-art algorithms.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems