大接收野的影响和其他警告

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rui Santos, João Pedrosa, Ana Maria Mendonça, Aurélio Campilho
{"title":"大接收野的影响和其他警告","authors":"Rui Santos,&nbsp;João Pedrosa,&nbsp;Ana Maria Mendonça,&nbsp;Aurélio Campilho","doi":"10.1016/j.cviu.2025.104383","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in complexity of deep learning models demands explanations that can be obtained with methods like Grad-CAM. This method computes an importance map for the last convolutional layer relative to a specific class, which is then upsampled to match the size of the input. However, this final step assumes that there is a spatial correspondence between the last feature map and the input, which may not be the case. We hypothesize that, for models with large receptive fields, the feature spatial organization is not kept during the forward pass, which may render the explanations devoid of meaning. To test this hypothesis, common architectures were applied to a medical scenario on the public VinDr-CXR dataset, to a subset of ImageNet and to datasets derived from MNIST. The results show a significant dispersion of the spatial information, which goes against the assumption of Grad-CAM, and that explainability maps are affected by this dispersion. Furthermore, we discuss several other caveats regarding Grad-CAM, such as feature map rectification, empty maps and the impact of global average pooling or flatten layers. Altogether, this work addresses some key limitations of Grad-CAM which may go unnoticed for common users, taking one step further in the pursuit for more reliable explainability methods.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"258 ","pages":"Article 104383"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grad-CAM: The impact of large receptive fields and other caveats\",\"authors\":\"Rui Santos,&nbsp;João Pedrosa,&nbsp;Ana Maria Mendonça,&nbsp;Aurélio Campilho\",\"doi\":\"10.1016/j.cviu.2025.104383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increase in complexity of deep learning models demands explanations that can be obtained with methods like Grad-CAM. This method computes an importance map for the last convolutional layer relative to a specific class, which is then upsampled to match the size of the input. However, this final step assumes that there is a spatial correspondence between the last feature map and the input, which may not be the case. We hypothesize that, for models with large receptive fields, the feature spatial organization is not kept during the forward pass, which may render the explanations devoid of meaning. To test this hypothesis, common architectures were applied to a medical scenario on the public VinDr-CXR dataset, to a subset of ImageNet and to datasets derived from MNIST. The results show a significant dispersion of the spatial information, which goes against the assumption of Grad-CAM, and that explainability maps are affected by this dispersion. Furthermore, we discuss several other caveats regarding Grad-CAM, such as feature map rectification, empty maps and the impact of global average pooling or flatten layers. Altogether, this work addresses some key limitations of Grad-CAM which may go unnoticed for common users, taking one step further in the pursuit for more reliable explainability methods.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"258 \",\"pages\":\"Article 104383\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314225001067\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001067","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型复杂性的增加需要用Grad-CAM之类的方法来解释。该方法计算最后一个卷积层相对于特定类的重要性映射,然后将其上采样以匹配输入的大小。然而,最后一步假设在最后一个特征映射和输入之间存在空间对应关系,而事实可能并非如此。我们假设,对于具有大接受域的模型,在向前传递过程中特征空间组织没有保持,这可能导致解释缺乏意义。为了测试这一假设,我们将通用架构应用于公共vdr - cxr数据集上的医疗场景、ImageNet的一个子集以及来自MNIST的数据集。结果表明,空间信息具有明显的离散性,这与Grad-CAM的假设相违背,并且可解释性图也受到这种离散性的影响。此外,我们还讨论了关于Grad-CAM的其他几个注意事项,例如特征地图校正、空地图以及全球平均池化或平坦层的影响。总之,这项工作解决了Grad-CAM的一些关键限制,这些限制可能被普通用户忽视,在追求更可靠的可解释性方法方面又向前迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grad-CAM: The impact of large receptive fields and other caveats
The increase in complexity of deep learning models demands explanations that can be obtained with methods like Grad-CAM. This method computes an importance map for the last convolutional layer relative to a specific class, which is then upsampled to match the size of the input. However, this final step assumes that there is a spatial correspondence between the last feature map and the input, which may not be the case. We hypothesize that, for models with large receptive fields, the feature spatial organization is not kept during the forward pass, which may render the explanations devoid of meaning. To test this hypothesis, common architectures were applied to a medical scenario on the public VinDr-CXR dataset, to a subset of ImageNet and to datasets derived from MNIST. The results show a significant dispersion of the spatial information, which goes against the assumption of Grad-CAM, and that explainability maps are affected by this dispersion. Furthermore, we discuss several other caveats regarding Grad-CAM, such as feature map rectification, empty maps and the impact of global average pooling or flatten layers. Altogether, this work addresses some key limitations of Grad-CAM which may go unnoticed for common users, taking one step further in the pursuit for more reliable explainability methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信