Dennis Khodasevich , Anne K. Bozack , Belinda L. Needham , David H. Rehkopf , Andres Cardenas
{"title":"全氟烷基和多氟烷基物质暴露与表观遗传年龄之间的性别特异性关联:1999-2000年全国健康和营养检查调查的结果","authors":"Dennis Khodasevich , Anne K. Bozack , Belinda L. Needham , David H. Rehkopf , Andres Cardenas","doi":"10.1016/j.envres.2025.121827","DOIUrl":null,"url":null,"abstract":"<div><div>Per-and polyfluoroalkyl substances (PFAS) are a pervasive family of synthetic compounds with a wide range of reported health effects. Epigenetic clocks, DNA methylation-based predictors of chronological and biological age, are promising biomarkers for characterizing biological aging in humans. The potential impact of PFAS exposure on epigenetic aging in the general US population remains unclear. In the 1999–2000 National Health and Nutrition Examination Survey (NHANES) cycle (N = 262), eleven PFASs were measured in serum and DNA methylation was measured in blood with the EPICv1 array. Seven epigenetic clocks and their respective epigenetic age acceleration (EAA) measures were calculated. Survey-design weighted generalized linear regression models were used to test adjusted associations between individual log<sub>2</sub>-transformed PFAS concentrations and EAA stratified by sex. Among male participants, doubling of PFNA concentrations was associated with greater EAA across several clocks including the Horvath clock (beta = 1.48, 95 % CI: 0.35, 2.61), Skin&Blood clock (beta = 1.27, 95 % CI: 0.21, 2.32), and PhenoAge (beta = 1.43, 95 % CI: 0.41, 2.44), and doubling of PFOS exposure was associated with greater Skin&Blood EAA (beta = 1.14, 95 % CI: 0.04, 2.24). When considering cell-adjusted EAA measures, each of these associations among male participants remained significant, and PFOSA was associated with decreased PhenoAge EAA (beta = −0.84, 95 % CI: −1.49, −0.18) and GrimAge2 EAA (beta = −0.81, 95 % CI: −1.51, −0.11) among female participants. In summary, we found evidence of sex-specific associations between PFAS exposure and epigenetic aging in a sample of older adults representative of the general US population.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"279 ","pages":"Article 121827"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex-specific associations between per- and polyfluoroalkyl substance exposure and epigenetic age: Findings from the National Health and Nutrition Examination survey 1999–2000\",\"authors\":\"Dennis Khodasevich , Anne K. Bozack , Belinda L. Needham , David H. Rehkopf , Andres Cardenas\",\"doi\":\"10.1016/j.envres.2025.121827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Per-and polyfluoroalkyl substances (PFAS) are a pervasive family of synthetic compounds with a wide range of reported health effects. Epigenetic clocks, DNA methylation-based predictors of chronological and biological age, are promising biomarkers for characterizing biological aging in humans. The potential impact of PFAS exposure on epigenetic aging in the general US population remains unclear. In the 1999–2000 National Health and Nutrition Examination Survey (NHANES) cycle (N = 262), eleven PFASs were measured in serum and DNA methylation was measured in blood with the EPICv1 array. Seven epigenetic clocks and their respective epigenetic age acceleration (EAA) measures were calculated. Survey-design weighted generalized linear regression models were used to test adjusted associations between individual log<sub>2</sub>-transformed PFAS concentrations and EAA stratified by sex. Among male participants, doubling of PFNA concentrations was associated with greater EAA across several clocks including the Horvath clock (beta = 1.48, 95 % CI: 0.35, 2.61), Skin&Blood clock (beta = 1.27, 95 % CI: 0.21, 2.32), and PhenoAge (beta = 1.43, 95 % CI: 0.41, 2.44), and doubling of PFOS exposure was associated with greater Skin&Blood EAA (beta = 1.14, 95 % CI: 0.04, 2.24). When considering cell-adjusted EAA measures, each of these associations among male participants remained significant, and PFOSA was associated with decreased PhenoAge EAA (beta = −0.84, 95 % CI: −1.49, −0.18) and GrimAge2 EAA (beta = −0.81, 95 % CI: −1.51, −0.11) among female participants. In summary, we found evidence of sex-specific associations between PFAS exposure and epigenetic aging in a sample of older adults representative of the general US population.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"279 \",\"pages\":\"Article 121827\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935125010783\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125010783","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sex-specific associations between per- and polyfluoroalkyl substance exposure and epigenetic age: Findings from the National Health and Nutrition Examination survey 1999–2000
Per-and polyfluoroalkyl substances (PFAS) are a pervasive family of synthetic compounds with a wide range of reported health effects. Epigenetic clocks, DNA methylation-based predictors of chronological and biological age, are promising biomarkers for characterizing biological aging in humans. The potential impact of PFAS exposure on epigenetic aging in the general US population remains unclear. In the 1999–2000 National Health and Nutrition Examination Survey (NHANES) cycle (N = 262), eleven PFASs were measured in serum and DNA methylation was measured in blood with the EPICv1 array. Seven epigenetic clocks and their respective epigenetic age acceleration (EAA) measures were calculated. Survey-design weighted generalized linear regression models were used to test adjusted associations between individual log2-transformed PFAS concentrations and EAA stratified by sex. Among male participants, doubling of PFNA concentrations was associated with greater EAA across several clocks including the Horvath clock (beta = 1.48, 95 % CI: 0.35, 2.61), Skin&Blood clock (beta = 1.27, 95 % CI: 0.21, 2.32), and PhenoAge (beta = 1.43, 95 % CI: 0.41, 2.44), and doubling of PFOS exposure was associated with greater Skin&Blood EAA (beta = 1.14, 95 % CI: 0.04, 2.24). When considering cell-adjusted EAA measures, each of these associations among male participants remained significant, and PFOSA was associated with decreased PhenoAge EAA (beta = −0.84, 95 % CI: −1.49, −0.18) and GrimAge2 EAA (beta = −0.81, 95 % CI: −1.51, −0.11) among female participants. In summary, we found evidence of sex-specific associations between PFAS exposure and epigenetic aging in a sample of older adults representative of the general US population.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.