交错垂直相变材料圆柱体双通式太阳能空气加热器:热性能评价

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Sahibzada Imad Ud Din , Adnan Ibrahim , Ahmad Fazlizan , Norasikin Ahmad Ludin , Muhammad Aqil Afham Rahmat , Haris Ali , Amel Djebara , Zouheyr Noui
{"title":"交错垂直相变材料圆柱体双通式太阳能空气加热器:热性能评价","authors":"Sahibzada Imad Ud Din ,&nbsp;Adnan Ibrahim ,&nbsp;Ahmad Fazlizan ,&nbsp;Norasikin Ahmad Ludin ,&nbsp;Muhammad Aqil Afham Rahmat ,&nbsp;Haris Ali ,&nbsp;Amel Djebara ,&nbsp;Zouheyr Noui","doi":"10.1016/j.applthermaleng.2025.126762","DOIUrl":null,"url":null,"abstract":"<div><div>Low thermal efficiency and inconsistent temperature distribution remain key obstacles in current solar air heater designs. To address this problem, this study proposes a novel double-pass solar air heater featuring a sandwich structure with vertical phase change material cylinders arranged in a staggered layout within the second channel. A combined numerical and indoor experimental approach was employed to study the thermal performance under varying mass flow rates of 0.01–––0.05 kg/s and solar irradiances of 400–1000 W/m<sup>2</sup>. The numerical simulations provided detailed insights into temperature distribution and velocity contours<strong>,</strong> highlighting the impact of cylinder configuration on flow dynamics and heat transfer behaviour within the system. For experimental results, the system achieved a maximum thermal efficiency of 90.97 %, with a temperature rise of 25.9 °C at a mass flow rate of 0.05 kg/s and 0.01 kg/s, respectively, under a solar irradiance of 1000 W/m<sup>2</sup>. For optimum performance, a mass flow rate of 0.01–0.03 kg/s is suitable for practical applications like solar drying and space heating. Relative errors varied in the range of 1.60 % and 3.26 % for thermal efficiency between numerical and experimental results, which portrays a good agreement. The findings suggest that this storage design is a promising solution for enhancing energy efficiency and thermal stability in solar air heater applications.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"274 ","pages":"Article 126762"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-pass solar air heater with staggered vertical phase change material cylinders: Thermal performance evaluation\",\"authors\":\"Sahibzada Imad Ud Din ,&nbsp;Adnan Ibrahim ,&nbsp;Ahmad Fazlizan ,&nbsp;Norasikin Ahmad Ludin ,&nbsp;Muhammad Aqil Afham Rahmat ,&nbsp;Haris Ali ,&nbsp;Amel Djebara ,&nbsp;Zouheyr Noui\",\"doi\":\"10.1016/j.applthermaleng.2025.126762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low thermal efficiency and inconsistent temperature distribution remain key obstacles in current solar air heater designs. To address this problem, this study proposes a novel double-pass solar air heater featuring a sandwich structure with vertical phase change material cylinders arranged in a staggered layout within the second channel. A combined numerical and indoor experimental approach was employed to study the thermal performance under varying mass flow rates of 0.01–––0.05 kg/s and solar irradiances of 400–1000 W/m<sup>2</sup>. The numerical simulations provided detailed insights into temperature distribution and velocity contours<strong>,</strong> highlighting the impact of cylinder configuration on flow dynamics and heat transfer behaviour within the system. For experimental results, the system achieved a maximum thermal efficiency of 90.97 %, with a temperature rise of 25.9 °C at a mass flow rate of 0.05 kg/s and 0.01 kg/s, respectively, under a solar irradiance of 1000 W/m<sup>2</sup>. For optimum performance, a mass flow rate of 0.01–0.03 kg/s is suitable for practical applications like solar drying and space heating. Relative errors varied in the range of 1.60 % and 3.26 % for thermal efficiency between numerical and experimental results, which portrays a good agreement. The findings suggest that this storage design is a promising solution for enhancing energy efficiency and thermal stability in solar air heater applications.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"274 \",\"pages\":\"Article 126762\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125013547\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125013547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

热效率低和温度分布不均匀是目前太阳能空气加热器设计的主要障碍。为了解决这一问题,本研究提出了一种新型的双通道太阳能空气加热器,该加热器采用三明治结构,垂直相变材料圆柱体在第二通道内交错排列。采用数值与室内实验相结合的方法,研究了质量流量为0.01 ~ 0.05 kg/s、太阳辐照度为400 ~ 1000 W/m2时的热工性能。数值模拟提供了对温度分布和速度轮廓的详细见解,突出了气缸配置对系统内流动动力学和传热行为的影响。实验结果表明,在太阳辐照度为1000 W/m2时,当质量流量为0.05 kg/s和0.01 kg/s时,系统的最大热效率为90.97%,温升为25.9℃。为了获得最佳性能,0.01-0.03 kg/s的质量流量适合于太阳能干燥和空间加热等实际应用。数值计算结果与实验结果的相对误差在1.60% ~ 3.26%之间,两者吻合较好。研究结果表明,这种存储设计是提高太阳能空气加热器应用的能源效率和热稳定性的有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-pass solar air heater with staggered vertical phase change material cylinders: Thermal performance evaluation
Low thermal efficiency and inconsistent temperature distribution remain key obstacles in current solar air heater designs. To address this problem, this study proposes a novel double-pass solar air heater featuring a sandwich structure with vertical phase change material cylinders arranged in a staggered layout within the second channel. A combined numerical and indoor experimental approach was employed to study the thermal performance under varying mass flow rates of 0.01–––0.05 kg/s and solar irradiances of 400–1000 W/m2. The numerical simulations provided detailed insights into temperature distribution and velocity contours, highlighting the impact of cylinder configuration on flow dynamics and heat transfer behaviour within the system. For experimental results, the system achieved a maximum thermal efficiency of 90.97 %, with a temperature rise of 25.9 °C at a mass flow rate of 0.05 kg/s and 0.01 kg/s, respectively, under a solar irradiance of 1000 W/m2. For optimum performance, a mass flow rate of 0.01–0.03 kg/s is suitable for practical applications like solar drying and space heating. Relative errors varied in the range of 1.60 % and 3.26 % for thermal efficiency between numerical and experimental results, which portrays a good agreement. The findings suggest that this storage design is a promising solution for enhancing energy efficiency and thermal stability in solar air heater applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信