Anders Frem Wolstrup , Jon Spangenberg , Akio Yamamoto , Andrew Gleadall , Gabriel Zsurzsan
{"title":"3D打印机电传感器的进展:性能比较、趋势和未来方向","authors":"Anders Frem Wolstrup , Jon Spangenberg , Akio Yamamoto , Andrew Gleadall , Gabriel Zsurzsan","doi":"10.1016/j.addma.2025.104799","DOIUrl":null,"url":null,"abstract":"<div><div>3D printing has revolutionized electromechanical sensor design, enabling rapid prototyping and complex geometries, and driving significant growth in this research field. However, as more sensors are developed using diverse printing methods and sensing mechanisms, the need for standardized reporting and comparative metrics becomes increasingly critical. Without such metrics, new sensors cannot be properly contextualized or benchmarked against the state of the art, slowing progress in the field. This review addresses this gap by cataloguing key performance metrics from the literature, including input/output range, sensitivity, mechanical and electrical properties, and the specific 3D printing processes used, to enable meaningful comparison. These metrics are applied to quantitatively analyze 74 sensors reported across different additive manufacturing techniques. Additionally, underreported characteristics such as hysteresis, drift, and long-term stability are considered to provide a more complete assessment of sensor performance. Beyond quantitative comparison, this review introduces a framework for categorizing sensors based not only on electrical output type (e.g., resistive, capacitive) but also on the underlying sensing basis, distinguishing whether the response arises from intrinsic material properties (e.g., quantum tunneling, percolation) or from structure-induced mechanisms (e.g., constriction resistance). The review also highlights advances in 3D printing for electronics manufacturing to inspire future directions and concludes with six recommendations for sensor development, focusing on aligning sensing mechanisms with appropriate fabrication strategies and aiding metric standardization across the field.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"106 ","pages":"Article 104799"},"PeriodicalIF":10.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in 3D printed electromechanical sensors: Performance comparison, trends, and future directions\",\"authors\":\"Anders Frem Wolstrup , Jon Spangenberg , Akio Yamamoto , Andrew Gleadall , Gabriel Zsurzsan\",\"doi\":\"10.1016/j.addma.2025.104799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D printing has revolutionized electromechanical sensor design, enabling rapid prototyping and complex geometries, and driving significant growth in this research field. However, as more sensors are developed using diverse printing methods and sensing mechanisms, the need for standardized reporting and comparative metrics becomes increasingly critical. Without such metrics, new sensors cannot be properly contextualized or benchmarked against the state of the art, slowing progress in the field. This review addresses this gap by cataloguing key performance metrics from the literature, including input/output range, sensitivity, mechanical and electrical properties, and the specific 3D printing processes used, to enable meaningful comparison. These metrics are applied to quantitatively analyze 74 sensors reported across different additive manufacturing techniques. Additionally, underreported characteristics such as hysteresis, drift, and long-term stability are considered to provide a more complete assessment of sensor performance. Beyond quantitative comparison, this review introduces a framework for categorizing sensors based not only on electrical output type (e.g., resistive, capacitive) but also on the underlying sensing basis, distinguishing whether the response arises from intrinsic material properties (e.g., quantum tunneling, percolation) or from structure-induced mechanisms (e.g., constriction resistance). The review also highlights advances in 3D printing for electronics manufacturing to inspire future directions and concludes with six recommendations for sensor development, focusing on aligning sensing mechanisms with appropriate fabrication strategies and aiding metric standardization across the field.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"106 \",\"pages\":\"Article 104799\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860425001630\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001630","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Advances in 3D printed electromechanical sensors: Performance comparison, trends, and future directions
3D printing has revolutionized electromechanical sensor design, enabling rapid prototyping and complex geometries, and driving significant growth in this research field. However, as more sensors are developed using diverse printing methods and sensing mechanisms, the need for standardized reporting and comparative metrics becomes increasingly critical. Without such metrics, new sensors cannot be properly contextualized or benchmarked against the state of the art, slowing progress in the field. This review addresses this gap by cataloguing key performance metrics from the literature, including input/output range, sensitivity, mechanical and electrical properties, and the specific 3D printing processes used, to enable meaningful comparison. These metrics are applied to quantitatively analyze 74 sensors reported across different additive manufacturing techniques. Additionally, underreported characteristics such as hysteresis, drift, and long-term stability are considered to provide a more complete assessment of sensor performance. Beyond quantitative comparison, this review introduces a framework for categorizing sensors based not only on electrical output type (e.g., resistive, capacitive) but also on the underlying sensing basis, distinguishing whether the response arises from intrinsic material properties (e.g., quantum tunneling, percolation) or from structure-induced mechanisms (e.g., constriction resistance). The review also highlights advances in 3D printing for electronics manufacturing to inspire future directions and concludes with six recommendations for sensor development, focusing on aligning sensing mechanisms with appropriate fabrication strategies and aiding metric standardization across the field.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.