反应扩散问题bakhvalov型网格NIPG方法平衡范数的超接近性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiayu Wang , Xiaowei Liu , Xiaoqi Ma
{"title":"反应扩散问题bakhvalov型网格NIPG方法平衡范数的超接近性","authors":"Jiayu Wang ,&nbsp;Xiaowei Liu ,&nbsp;Xiaoqi Ma","doi":"10.1016/j.aml.2025.109594","DOIUrl":null,"url":null,"abstract":"<div><div>For numerical methods applied to singularly perturbed reaction-diffusion problems, the balanced norm has emerged as an effective tool. In this manuscript, we analyze supercloseness properties in the balanced norm for the nonsymmetric interior penalty Galerkin (NIPG) method on a Bakhvalov-type mesh. To achieve this, we construct a novel interpolant that combines the Lagrange interpolant and a local weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> projection. Furthermore, by appropriately defining penalty parameters at the nodal points of the Bakhvalov-type mesh, we establish supercloseness of almost order <span><math><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> in most cases.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"169 ","pages":"Article 109594"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercloseness in a balanced norm of the NIPG method on Bakhvalov-type meshes for a reaction diffusion problem\",\"authors\":\"Jiayu Wang ,&nbsp;Xiaowei Liu ,&nbsp;Xiaoqi Ma\",\"doi\":\"10.1016/j.aml.2025.109594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For numerical methods applied to singularly perturbed reaction-diffusion problems, the balanced norm has emerged as an effective tool. In this manuscript, we analyze supercloseness properties in the balanced norm for the nonsymmetric interior penalty Galerkin (NIPG) method on a Bakhvalov-type mesh. To achieve this, we construct a novel interpolant that combines the Lagrange interpolant and a local weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> projection. Furthermore, by appropriately defining penalty parameters at the nodal points of the Bakhvalov-type mesh, we establish supercloseness of almost order <span><math><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> in most cases.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"169 \",\"pages\":\"Article 109594\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

平衡范数已成为求解奇摄动反应扩散问题的有效工具。在本文中,我们分析了bakhvalov型网格上非对称内罚Galerkin (NIPG)方法的平衡范数的超接近性。为了实现这一点,我们构造了一个新的插值,它结合了拉格朗日插值和局部加权L2投影。此外,通过适当地定义bakhvalov型网格节点处的惩罚参数,我们在大多数情况下建立了几乎为k+1阶的超紧密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercloseness in a balanced norm of the NIPG method on Bakhvalov-type meshes for a reaction diffusion problem
For numerical methods applied to singularly perturbed reaction-diffusion problems, the balanced norm has emerged as an effective tool. In this manuscript, we analyze supercloseness properties in the balanced norm for the nonsymmetric interior penalty Galerkin (NIPG) method on a Bakhvalov-type mesh. To achieve this, we construct a novel interpolant that combines the Lagrange interpolant and a local weighted L2 projection. Furthermore, by appropriately defining penalty parameters at the nodal points of the Bakhvalov-type mesh, we establish supercloseness of almost order k+1 in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信