Cu - Ov - Mn单元中的不对称氧空位促进了MnO2中的电荷转移,从而提高了杂化电容去离子效率

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Weijie Fu , Jingxian Li , Yuanming Liu , Shuyun Yao , Shiyu Wang , kang Ji , Xiaojun Wang , Lanlan Shi , Xiaoke Li , Feike Zhang , Jiangzhou Xie , Zhiyu Yang , Yi-Ming Yan
{"title":"Cu - Ov - Mn单元中的不对称氧空位促进了MnO2中的电荷转移,从而提高了杂化电容去离子效率","authors":"Weijie Fu ,&nbsp;Jingxian Li ,&nbsp;Yuanming Liu ,&nbsp;Shuyun Yao ,&nbsp;Shiyu Wang ,&nbsp;kang Ji ,&nbsp;Xiaojun Wang ,&nbsp;Lanlan Shi ,&nbsp;Xiaoke Li ,&nbsp;Feike Zhang ,&nbsp;Jiangzhou Xie ,&nbsp;Zhiyu Yang ,&nbsp;Yi-Ming Yan","doi":"10.1016/j.desal.2025.119000","DOIUrl":null,"url":null,"abstract":"<div><div>Manganese dioxide (MnO<sub>2</sub>), despite its high theoretical capacitance, has been limited in hybrid capacitive deionization (HCDI) applications due to its inherently low conductivity, which impairs salt removal efficiency. Here, we introduce a strategy involving the integration of an asymmetric oxygen vacancy structure, specifically a Cu-O<sub>v</sub>-Mn unit into MnO<sub>2</sub>, significantly enhancing their electronic structure and HCDI performance. This structural innovation promotes a redistribution of electrons at the oxygen vacancy, facilitating enhanced electron flow towards Mn atoms and altering their electronic states. Density functional theory (DFT) calculations reveal that Cu doping reduces the band gap of MnO<sub>2</sub>, situating more electrons near the Fermi level and thereby improving electron transfer dynamics. These calculations also show an increase in the electron occupancy of lower energy t<sub>2g</sub> orbitals in Cu-MnO<sub>2</sub>/O<sub>v</sub>, accompanied by a notable elevation in their energy levels. This adjustment not only enhances the probability of electron transitions but also significantly lowers the migration barrier for Na<sup>+</sup> ions, thus improving ion mobility. In a 500 mg L<sup>−1</sup> NaCl solution, the Cu-MnO<sub>2</sub>/O<sub>v</sub> electrodes demonstrated a superior salt adsorption capacity (SAC) of 75.5 mg g<sup>−1</sup> and a salt adsorption rate (SAR) of 3.33 mg g<sup>−1</sup> min<sup>−1</sup> at 1.2 V. These findings underscore the potential of asymmetric oxygen vacancies to modulate the properties of transition metal oxides, providing a pathway to both improved HCDI performance and a broader application spectrum for MnO<sub>2</sub>-based materials.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"613 ","pages":"Article 119000"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric oxygen vacancies in Cu - Ov - Mn units boost charge transfer in MnO2 for enhanced hybrid capacitive deionization efficiency\",\"authors\":\"Weijie Fu ,&nbsp;Jingxian Li ,&nbsp;Yuanming Liu ,&nbsp;Shuyun Yao ,&nbsp;Shiyu Wang ,&nbsp;kang Ji ,&nbsp;Xiaojun Wang ,&nbsp;Lanlan Shi ,&nbsp;Xiaoke Li ,&nbsp;Feike Zhang ,&nbsp;Jiangzhou Xie ,&nbsp;Zhiyu Yang ,&nbsp;Yi-Ming Yan\",\"doi\":\"10.1016/j.desal.2025.119000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Manganese dioxide (MnO<sub>2</sub>), despite its high theoretical capacitance, has been limited in hybrid capacitive deionization (HCDI) applications due to its inherently low conductivity, which impairs salt removal efficiency. Here, we introduce a strategy involving the integration of an asymmetric oxygen vacancy structure, specifically a Cu-O<sub>v</sub>-Mn unit into MnO<sub>2</sub>, significantly enhancing their electronic structure and HCDI performance. This structural innovation promotes a redistribution of electrons at the oxygen vacancy, facilitating enhanced electron flow towards Mn atoms and altering their electronic states. Density functional theory (DFT) calculations reveal that Cu doping reduces the band gap of MnO<sub>2</sub>, situating more electrons near the Fermi level and thereby improving electron transfer dynamics. These calculations also show an increase in the electron occupancy of lower energy t<sub>2g</sub> orbitals in Cu-MnO<sub>2</sub>/O<sub>v</sub>, accompanied by a notable elevation in their energy levels. This adjustment not only enhances the probability of electron transitions but also significantly lowers the migration barrier for Na<sup>+</sup> ions, thus improving ion mobility. In a 500 mg L<sup>−1</sup> NaCl solution, the Cu-MnO<sub>2</sub>/O<sub>v</sub> electrodes demonstrated a superior salt adsorption capacity (SAC) of 75.5 mg g<sup>−1</sup> and a salt adsorption rate (SAR) of 3.33 mg g<sup>−1</sup> min<sup>−1</sup> at 1.2 V. These findings underscore the potential of asymmetric oxygen vacancies to modulate the properties of transition metal oxides, providing a pathway to both improved HCDI performance and a broader application spectrum for MnO<sub>2</sub>-based materials.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"613 \",\"pages\":\"Article 119000\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001191642500476X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001191642500476X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化锰(MnO2)虽然具有很高的理论电容,但由于其固有的低电导率,限制了其在混合电容去离子(HCDI)中的应用,从而降低了除盐效率。在这里,我们介绍了一种将不对称氧空位结构(特别是Cu-Ov-Mn单元)集成到MnO2中的策略,显著提高了MnO2的电子结构和HCDI性能。这种结构创新促进了电子在氧空位的重新分配,促进了电子流向Mn原子并改变了它们的电子状态。密度泛函理论(DFT)计算表明,Cu掺杂减小了MnO2的带隙,使更多的电子位于费米能级附近,从而改善了电子转移动力学。这些计算还表明Cu-MnO2/Ov中较低能量的t2g轨道的电子占位增加,伴随着它们的能级显著升高。这种调整不仅提高了电子跃迁的概率,而且显著降低了Na+离子的迁移势垒,从而提高了离子的迁移率。在500 mg L−1 NaCl溶液中,Cu-MnO2/Ov电极在1.2 V电压下具有75.5 mg g−1的优异盐吸附容量(SAC)和3.33 mg g−1 min−1的吸附速率(SAR)。这些发现强调了不对称氧空位调节过渡金属氧化物性质的潜力,为改善HCDI性能和扩大二氧化锰基材料的应用范围提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric oxygen vacancies in Cu - Ov - Mn units boost charge transfer in MnO2 for enhanced hybrid capacitive deionization efficiency
Manganese dioxide (MnO2), despite its high theoretical capacitance, has been limited in hybrid capacitive deionization (HCDI) applications due to its inherently low conductivity, which impairs salt removal efficiency. Here, we introduce a strategy involving the integration of an asymmetric oxygen vacancy structure, specifically a Cu-Ov-Mn unit into MnO2, significantly enhancing their electronic structure and HCDI performance. This structural innovation promotes a redistribution of electrons at the oxygen vacancy, facilitating enhanced electron flow towards Mn atoms and altering their electronic states. Density functional theory (DFT) calculations reveal that Cu doping reduces the band gap of MnO2, situating more electrons near the Fermi level and thereby improving electron transfer dynamics. These calculations also show an increase in the electron occupancy of lower energy t2g orbitals in Cu-MnO2/Ov, accompanied by a notable elevation in their energy levels. This adjustment not only enhances the probability of electron transitions but also significantly lowers the migration barrier for Na+ ions, thus improving ion mobility. In a 500 mg L−1 NaCl solution, the Cu-MnO2/Ov electrodes demonstrated a superior salt adsorption capacity (SAC) of 75.5 mg g−1 and a salt adsorption rate (SAR) of 3.33 mg g−1 min−1 at 1.2 V. These findings underscore the potential of asymmetric oxygen vacancies to modulate the properties of transition metal oxides, providing a pathway to both improved HCDI performance and a broader application spectrum for MnO2-based materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信