基于改进CEEMD分解混合去噪的超短期风电预测

IF 9 1区 工程技术 Q1 ENERGY & FUELS
JiaJing Gao , HongMei Xing , YongSheng Wang , GuangChen Liu , Bo Cheng , DeLong Zhang
{"title":"基于改进CEEMD分解混合去噪的超短期风电预测","authors":"JiaJing Gao ,&nbsp;HongMei Xing ,&nbsp;YongSheng Wang ,&nbsp;GuangChen Liu ,&nbsp;Bo Cheng ,&nbsp;DeLong Zhang","doi":"10.1016/j.renene.2025.123352","DOIUrl":null,"url":null,"abstract":"<div><div>Ultra-short-term wind power prediction plays a crucial role in grid stability and energy management. To tackle the complexity of wind power data, this paper presents a Grey Relation Analysis-Improved Complete Ensemble Empirical Mode Decomposition (GCEEMD) method, integrating advanced denoising techniques and improvements. First, the Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) are applied to analyze the data across multiple scales in both the frequency and time domains. This effectively extracts periodic features, removes noise, and preserves the dynamic characteristics of wind power. Next, Grey Relation Analysis (GRA) is introduced to optimize the CEEMD decomposition process by prioritizing key variables, which enhances the model's responsiveness to major trends and patterns. Finally, a Generative Adversarial Network (GAN) is combined with the NSGA-II algorithm to optimize component integration, significantly enhancing prediction accuracy and stability. Experimental results confirm the effectiveness of the proposed method when applied to real wind farm data.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"251 ","pages":"Article 123352"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-short-term wind power prediction based on hybrid denoising with improved CEEMD decomposition\",\"authors\":\"JiaJing Gao ,&nbsp;HongMei Xing ,&nbsp;YongSheng Wang ,&nbsp;GuangChen Liu ,&nbsp;Bo Cheng ,&nbsp;DeLong Zhang\",\"doi\":\"10.1016/j.renene.2025.123352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultra-short-term wind power prediction plays a crucial role in grid stability and energy management. To tackle the complexity of wind power data, this paper presents a Grey Relation Analysis-Improved Complete Ensemble Empirical Mode Decomposition (GCEEMD) method, integrating advanced denoising techniques and improvements. First, the Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) are applied to analyze the data across multiple scales in both the frequency and time domains. This effectively extracts periodic features, removes noise, and preserves the dynamic characteristics of wind power. Next, Grey Relation Analysis (GRA) is introduced to optimize the CEEMD decomposition process by prioritizing key variables, which enhances the model's responsiveness to major trends and patterns. Finally, a Generative Adversarial Network (GAN) is combined with the NSGA-II algorithm to optimize component integration, significantly enhancing prediction accuracy and stability. Experimental results confirm the effectiveness of the proposed method when applied to real wind farm data.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"251 \",\"pages\":\"Article 123352\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125010146\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125010146","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风电超短期预测在电网稳定和能源管理中具有重要作用。为了解决风电数据的复杂性,本文提出了一种灰色关联分析-改进的完全集成经验模态分解(GCEEMD)方法,该方法集成了先进的去噪技术和改进方法。首先,应用离散傅立叶变换(DFT)和离散小波变换(DWT)在频域和时域上对多尺度数据进行分析。这样可以有效地提取周期性特征,去除噪声,并保持风电的动态特性。其次,引入灰色关联分析(GRA),通过对关键变量进行优先排序,优化CEEMD分解过程,提高模型对主要趋势和模式的响应能力。最后,将生成式对抗网络(GAN)与NSGA-II算法相结合,对组件集成进行优化,显著提高了预测精度和稳定性。实验结果验证了该方法在实际风电场数据中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-short-term wind power prediction based on hybrid denoising with improved CEEMD decomposition
Ultra-short-term wind power prediction plays a crucial role in grid stability and energy management. To tackle the complexity of wind power data, this paper presents a Grey Relation Analysis-Improved Complete Ensemble Empirical Mode Decomposition (GCEEMD) method, integrating advanced denoising techniques and improvements. First, the Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) are applied to analyze the data across multiple scales in both the frequency and time domains. This effectively extracts periodic features, removes noise, and preserves the dynamic characteristics of wind power. Next, Grey Relation Analysis (GRA) is introduced to optimize the CEEMD decomposition process by prioritizing key variables, which enhances the model's responsiveness to major trends and patterns. Finally, a Generative Adversarial Network (GAN) is combined with the NSGA-II algorithm to optimize component integration, significantly enhancing prediction accuracy and stability. Experimental results confirm the effectiveness of the proposed method when applied to real wind farm data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信