非紧黎曼流形Schrödinger方程解的L∞有界性

IF 2.3 2区 数学 Q1 MATHEMATICS
Giuseppina Barletta
{"title":"非紧黎曼流形Schrödinger方程解的L∞有界性","authors":"Giuseppina Barletta","doi":"10.1016/j.jde.2025.113413","DOIUrl":null,"url":null,"abstract":"<div><div>We are interested in the boundedness of the solutions to a Schrödinger type equation, with an integrable, sign changing potential. The sufficient condition for the boundedness relies on the integrability of a function involving both the isocapacitary function of the domain and the decreasing rearrangement of the negative part of the potential.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113413"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L∞ boundedness of the solutions to the Schrödinger equation on noncompact Riemannian manifolds\",\"authors\":\"Giuseppina Barletta\",\"doi\":\"10.1016/j.jde.2025.113413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We are interested in the boundedness of the solutions to a Schrödinger type equation, with an integrable, sign changing potential. The sufficient condition for the boundedness relies on the integrability of a function involving both the isocapacitary function of the domain and the decreasing rearrangement of the negative part of the potential.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"439 \",\"pages\":\"Article 113413\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004401\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004401","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对具有可积变号势的Schrödinger型方程解的有界性感兴趣。有界性的充分条件依赖于一个函数的可积性,该函数既涉及定义域的等容函数,又涉及势的负部分的递减重排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L∞ boundedness of the solutions to the Schrödinger equation on noncompact Riemannian manifolds
We are interested in the boundedness of the solutions to a Schrödinger type equation, with an integrable, sign changing potential. The sufficient condition for the boundedness relies on the integrability of a function involving both the isocapacitary function of the domain and the decreasing rearrangement of the negative part of the potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信