原子级分散镍位嵌入碳支持有效的电化学二氧化碳还原

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Jiacheng Lu , Shengshen Gu , Rong Xu , Meng Guo , Juan Fang , Jing Zhong
{"title":"原子级分散镍位嵌入碳支持有效的电化学二氧化碳还原","authors":"Jiacheng Lu ,&nbsp;Shengshen Gu ,&nbsp;Rong Xu ,&nbsp;Meng Guo ,&nbsp;Juan Fang ,&nbsp;Jing Zhong","doi":"10.1016/j.ijhydene.2025.04.484","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atom catalysts have shown exceptional activity and selectivity for CO<sub>2</sub> electrochemical reduction reaction (CO<sub>2</sub>ERR) owing to the clearly defined and accessible active metallic sites. However, the role of Ni dispersion state (atomic vs. aggregated) on catalytic performance has remained elusive. Herein, we report the exploration of dispersion state effects on activities by synthesizing catalysts embedded with Ni single atoms or aggregated particles. The catalyst with highly-dispersed Ni single atoms shows the highest Faradaic efficiency (FE<sub>CO</sub>) for CO (96 % at -0.75 V vs. RHE) and the FE<sub>CO</sub> could be retained for 12 h without a significant decay. While the catalyst with crystalline Ni particles shows a decreased FE<sub>CO</sub> of 80 % and the catalyst with no Ni shows a least FE<sub>CO</sub> of 38 % towards CO. The above experiments indicate that Ni metallic sites are the active centers for CO<sub>2</sub>ERR and atomic dispersion of Ni metallic sites plays a vital role in CO<sub>2</sub>ERR performance. Density functional theory (DFT) calculations reveal that the energy barrier of CO<sub>2</sub>ERR is reduced when Ni is in atomic dispersion rather than aggregation. The findings here have significant implications on a broad field of energy catalysis.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"136 ","pages":"Pages 600-608"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-level dispersed nickel sites embedded in carbon support for efficient electrochemical CO2 reduction\",\"authors\":\"Jiacheng Lu ,&nbsp;Shengshen Gu ,&nbsp;Rong Xu ,&nbsp;Meng Guo ,&nbsp;Juan Fang ,&nbsp;Jing Zhong\",\"doi\":\"10.1016/j.ijhydene.2025.04.484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single-atom catalysts have shown exceptional activity and selectivity for CO<sub>2</sub> electrochemical reduction reaction (CO<sub>2</sub>ERR) owing to the clearly defined and accessible active metallic sites. However, the role of Ni dispersion state (atomic vs. aggregated) on catalytic performance has remained elusive. Herein, we report the exploration of dispersion state effects on activities by synthesizing catalysts embedded with Ni single atoms or aggregated particles. The catalyst with highly-dispersed Ni single atoms shows the highest Faradaic efficiency (FE<sub>CO</sub>) for CO (96 % at -0.75 V vs. RHE) and the FE<sub>CO</sub> could be retained for 12 h without a significant decay. While the catalyst with crystalline Ni particles shows a decreased FE<sub>CO</sub> of 80 % and the catalyst with no Ni shows a least FE<sub>CO</sub> of 38 % towards CO. The above experiments indicate that Ni metallic sites are the active centers for CO<sub>2</sub>ERR and atomic dispersion of Ni metallic sites plays a vital role in CO<sub>2</sub>ERR performance. Density functional theory (DFT) calculations reveal that the energy barrier of CO<sub>2</sub>ERR is reduced when Ni is in atomic dispersion rather than aggregation. The findings here have significant implications on a broad field of energy catalysis.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"136 \",\"pages\":\"Pages 600-608\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925021913\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925021913","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于单原子催化剂具有明确的活性金属位,在CO2电化学还原反应(CO2ERR)中表现出优异的活性和选择性。然而,镍的分散状态(原子态和聚集态)对催化性能的影响仍然是难以捉摸的。在此,我们报告了通过合成Ni单原子或聚集粒子嵌入的催化剂来探索分散状态对活性的影响。具有高度分散的Ni单原子的催化剂对CO具有最高的法拉第效率(FECO)(在-0.75 V vs. RHE下为96%),并且FECO可以保持12小时而没有明显的衰减。而含Ni粒子的催化剂对CO的FECO降低了80%,不含Ni粒子的催化剂对CO的FECO最低为38%。上述实验表明,Ni金属位是CO2ERR的活性中心,Ni金属位的原子分散对CO2ERR的性能起着至关重要的作用。密度泛函理论(DFT)计算表明,当Ni处于原子弥散态而非聚集态时,CO2ERR的能垒降低。这里的发现对能量催化的广泛领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic-level dispersed nickel sites embedded in carbon support for efficient electrochemical CO2 reduction
Single-atom catalysts have shown exceptional activity and selectivity for CO2 electrochemical reduction reaction (CO2ERR) owing to the clearly defined and accessible active metallic sites. However, the role of Ni dispersion state (atomic vs. aggregated) on catalytic performance has remained elusive. Herein, we report the exploration of dispersion state effects on activities by synthesizing catalysts embedded with Ni single atoms or aggregated particles. The catalyst with highly-dispersed Ni single atoms shows the highest Faradaic efficiency (FECO) for CO (96 % at -0.75 V vs. RHE) and the FECO could be retained for 12 h without a significant decay. While the catalyst with crystalline Ni particles shows a decreased FECO of 80 % and the catalyst with no Ni shows a least FECO of 38 % towards CO. The above experiments indicate that Ni metallic sites are the active centers for CO2ERR and atomic dispersion of Ni metallic sites plays a vital role in CO2ERR performance. Density functional theory (DFT) calculations reveal that the energy barrier of CO2ERR is reduced when Ni is in atomic dispersion rather than aggregation. The findings here have significant implications on a broad field of energy catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信