界面微环境效应在激光制造的金纳米颗粒引导二氧化碳还原产物的产生

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Connor P. Cox, Qishen Lyu, Madeleine K. Wilsey, Likun Cai, Lydia R. Schultz, Jason R. Maher and Astrid M. Müller*, 
{"title":"界面微环境效应在激光制造的金纳米颗粒引导二氧化碳还原产物的产生","authors":"Connor P. Cox,&nbsp;Qishen Lyu,&nbsp;Madeleine K. Wilsey,&nbsp;Likun Cai,&nbsp;Lydia R. Schultz,&nbsp;Jason R. Maher and Astrid M. Müller*,&nbsp;","doi":"10.1021/acsmaterialsau.4c0016110.1021/acsmaterialsau.4c00161","DOIUrl":null,"url":null,"abstract":"<p >This study emphasizes the critical importance of using surfactant-free gold nanoparticles to gain mechanistic insights and improve the energy efficiency and carbon monoxide selectivity in aqueous carbon dioxide reduction electrocatalysis. We utilized pulsed laser in liquid synthesis to prepare surfactant-free gold nanoparticles with a nonequilibrium cauliflower morphology, which demonstrated superior catalytic performance compared to conventionally synthesized citrate-capped gold nanoparticles. By functionalizing gold nanoparticles with nine <i>n</i>-alkanethiols and two nitrogen-containing thiols, we investigated how the chemical identity of interfacial ligands and their corresponding self-assembled monolayers (SAMs) influence the selectivity and activity of gold nanoparticle-catalyzed CO<sub>2</sub> reduction. This approach enabled a detailed understanding of how SAM characteristics at gold nanocatalyst interfaces affect key aspects of CO<sub>2</sub> electrocatalysis, including CO<sub>2</sub> mass transport and interfacial water behavior. The laser-synthesized gold nanoparticles exhibited improved performance across all surface modifications. Our findings highlight the significance of precise control over material surfaces in understanding catalyst microenvironments, which is essential for optimizing CO<sub>2</sub> reduction processes and forming a foundation for sustainable syngas production through tailored nanomaterial design and functionalization strategies.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"522–536 522–536"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00161","citationCount":"0","resultStr":"{\"title\":\"Interfacial Microenvironment Effects at Laser-Made Gold Nanoparticles Steer Carbon Dioxide Reduction Product Generation\",\"authors\":\"Connor P. Cox,&nbsp;Qishen Lyu,&nbsp;Madeleine K. Wilsey,&nbsp;Likun Cai,&nbsp;Lydia R. Schultz,&nbsp;Jason R. Maher and Astrid M. Müller*,&nbsp;\",\"doi\":\"10.1021/acsmaterialsau.4c0016110.1021/acsmaterialsau.4c00161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study emphasizes the critical importance of using surfactant-free gold nanoparticles to gain mechanistic insights and improve the energy efficiency and carbon monoxide selectivity in aqueous carbon dioxide reduction electrocatalysis. We utilized pulsed laser in liquid synthesis to prepare surfactant-free gold nanoparticles with a nonequilibrium cauliflower morphology, which demonstrated superior catalytic performance compared to conventionally synthesized citrate-capped gold nanoparticles. By functionalizing gold nanoparticles with nine <i>n</i>-alkanethiols and two nitrogen-containing thiols, we investigated how the chemical identity of interfacial ligands and their corresponding self-assembled monolayers (SAMs) influence the selectivity and activity of gold nanoparticle-catalyzed CO<sub>2</sub> reduction. This approach enabled a detailed understanding of how SAM characteristics at gold nanocatalyst interfaces affect key aspects of CO<sub>2</sub> electrocatalysis, including CO<sub>2</sub> mass transport and interfacial water behavior. The laser-synthesized gold nanoparticles exhibited improved performance across all surface modifications. Our findings highlight the significance of precise control over material surfaces in understanding catalyst microenvironments, which is essential for optimizing CO<sub>2</sub> reduction processes and forming a foundation for sustainable syngas production through tailored nanomaterial design and functionalization strategies.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 3\",\"pages\":\"522–536 522–536\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究强调了使用无表面活性剂的金纳米颗粒来获得机理见解和提高水相二氧化碳还原电催化的能源效率和一氧化碳选择性的重要性。我们利用脉冲激光在液体合成中制备了具有非平衡花椰菜形态的无表面活性剂的金纳米颗粒,与传统合成的柠檬酸盐覆盖的金纳米颗粒相比,它具有优越的催化性能。通过用9种正烷硫醇和2种含氮硫醇功能化金纳米颗粒,研究了界面配体及其相应的自组装单层(sam)的化学性质如何影响金纳米颗粒催化CO2还原的选择性和活性。该方法可以详细了解金纳米催化剂界面上的SAM特性如何影响CO2电催化的关键方面,包括CO2质量传输和界面水行为。激光合成的金纳米颗粒在所有表面修饰中都表现出更好的性能。我们的研究结果强调了精确控制材料表面对理解催化剂微环境的重要性,这对于优化二氧化碳还原过程和通过定制纳米材料设计和功能化策略为可持续合成气生产奠定基础至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial Microenvironment Effects at Laser-Made Gold Nanoparticles Steer Carbon Dioxide Reduction Product Generation

This study emphasizes the critical importance of using surfactant-free gold nanoparticles to gain mechanistic insights and improve the energy efficiency and carbon monoxide selectivity in aqueous carbon dioxide reduction electrocatalysis. We utilized pulsed laser in liquid synthesis to prepare surfactant-free gold nanoparticles with a nonequilibrium cauliflower morphology, which demonstrated superior catalytic performance compared to conventionally synthesized citrate-capped gold nanoparticles. By functionalizing gold nanoparticles with nine n-alkanethiols and two nitrogen-containing thiols, we investigated how the chemical identity of interfacial ligands and their corresponding self-assembled monolayers (SAMs) influence the selectivity and activity of gold nanoparticle-catalyzed CO2 reduction. This approach enabled a detailed understanding of how SAM characteristics at gold nanocatalyst interfaces affect key aspects of CO2 electrocatalysis, including CO2 mass transport and interfacial water behavior. The laser-synthesized gold nanoparticles exhibited improved performance across all surface modifications. Our findings highlight the significance of precise control over material surfaces in understanding catalyst microenvironments, which is essential for optimizing CO2 reduction processes and forming a foundation for sustainable syngas production through tailored nanomaterial design and functionalization strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信