用in Operando x射线散射研究离子凝胶电解质中LiMn2O4的界面和结构演化

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Carlos G. Torres-Castanedo, Guennadi Evmenenko, Norman S. Luu, Woo Jin Hyun, Kyu-Young Park, Mark C. Hersam and Michael J. Bedzyk*, 
{"title":"用in Operando x射线散射研究离子凝胶电解质中LiMn2O4的界面和结构演化","authors":"Carlos G. Torres-Castanedo,&nbsp;Guennadi Evmenenko,&nbsp;Norman S. Luu,&nbsp;Woo Jin Hyun,&nbsp;Kyu-Young Park,&nbsp;Mark C. Hersam and Michael J. Bedzyk*,&nbsp;","doi":"10.1021/acsami.5c0439610.1021/acsami.5c04396","DOIUrl":null,"url":null,"abstract":"<p >Ionogels, electrolytes containing an ionic liquid and a solid matrix, show potential for enhancing Li-ion battery performance and versatility. Such composite materials offer tunable mechanical properties with the advantages of ionic liquids, such as high ionic conductivity and nonflammability. However, ensuring proper interfacial contact between the gel and electrodes remains challenging. Here, the stability of epitaxial LiMn<sub>2</sub>O<sub>4</sub> (111) electrode thin films was studied in an ionogel electrolyte containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) and h-BN nanoplatelets. <i>In operando</i> synchrotron X-ray scattering was employed to examine this electrode’s interfacial and structural evolution during operation. Despite the ionic liquid’s capability to suppress Mn dissolution, loss of crystallinity and formation of irreversible Li<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> phase were found, attributed to an inadequate contact between the gel and the cathode.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 19","pages":"28294–28299 28294–28299"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial and Structural Evolution of LiMn2O4 in an Ionogel Electrolyte Revealed by In Operando X-ray Scattering\",\"authors\":\"Carlos G. Torres-Castanedo,&nbsp;Guennadi Evmenenko,&nbsp;Norman S. Luu,&nbsp;Woo Jin Hyun,&nbsp;Kyu-Young Park,&nbsp;Mark C. Hersam and Michael J. Bedzyk*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0439610.1021/acsami.5c04396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ionogels, electrolytes containing an ionic liquid and a solid matrix, show potential for enhancing Li-ion battery performance and versatility. Such composite materials offer tunable mechanical properties with the advantages of ionic liquids, such as high ionic conductivity and nonflammability. However, ensuring proper interfacial contact between the gel and electrodes remains challenging. Here, the stability of epitaxial LiMn<sub>2</sub>O<sub>4</sub> (111) electrode thin films was studied in an ionogel electrolyte containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) and h-BN nanoplatelets. <i>In operando</i> synchrotron X-ray scattering was employed to examine this electrode’s interfacial and structural evolution during operation. Despite the ionic liquid’s capability to suppress Mn dissolution, loss of crystallinity and formation of irreversible Li<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub> phase were found, attributed to an inadequate contact between the gel and the cathode.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 19\",\"pages\":\"28294–28299 28294–28299\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c04396\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c04396","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子凝胶是一种含有离子液体和固体基质的电解质,具有增强锂离子电池性能和通用性的潜力。这种复合材料具有离子液体的优点,如高离子导电性和不可燃性,具有可调的机械性能。然而,确保凝胶和电极之间的界面接触仍然具有挑战性。本文在1-乙基-3-甲基咪唑-二(三氟甲基磺酰基)亚胺(EMIM-TFSI)和h-BN纳米片的离子凝胶电解质中,研究了外延LiMn2O4(111)电极薄膜的稳定性。利用同步x射线散射技术研究了该电极在工作过程中的界面和结构演变。尽管离子液体具有抑制Mn溶解的能力,但由于凝胶与阴极之间的接触不足,发现了结晶度的丧失和不可逆Li2Mn2O4相的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial and Structural Evolution of LiMn2O4 in an Ionogel Electrolyte Revealed by In Operando X-ray Scattering

Interfacial and Structural Evolution of LiMn2O4 in an Ionogel Electrolyte Revealed by In Operando X-ray Scattering

Ionogels, electrolytes containing an ionic liquid and a solid matrix, show potential for enhancing Li-ion battery performance and versatility. Such composite materials offer tunable mechanical properties with the advantages of ionic liquids, such as high ionic conductivity and nonflammability. However, ensuring proper interfacial contact between the gel and electrodes remains challenging. Here, the stability of epitaxial LiMn2O4 (111) electrode thin films was studied in an ionogel electrolyte containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) and h-BN nanoplatelets. In operando synchrotron X-ray scattering was employed to examine this electrode’s interfacial and structural evolution during operation. Despite the ionic liquid’s capability to suppress Mn dissolution, loss of crystallinity and formation of irreversible Li2Mn2O4 phase were found, attributed to an inadequate contact between the gel and the cathode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信