{"title":"基于晶圆级石墨烯的纳米多孔原子薄膜的超快制备","authors":"Shihua Pang, Ningran Wu, Dongxu Zhang, Yaru Gao, Junhe Tong, Jinze Zheng, Ye Liu, Siyu Hu, Shanshan Wang, Ying Zhang, Junqiang Wang, Dandan Hou* and Luda Wang*, ","doi":"10.1021/acsami.5c0149010.1021/acsami.5c01490","DOIUrl":null,"url":null,"abstract":"<p >Membrane separation technologies are garnering significant attention in both industry and academia due to their potential for energy savings and operational effectiveness. Among the promising materials for membranes, wafer-scale single-crystal graphene emerges as an exceptional candidate due to its ultraflat surface, superior mechanical strength, and chemical stability, making it ideal for the top-down fabrication of nanoporous separation membranes. Despite these promising properties, the slow etch rate of copper and the low transfer efficiency of wafer-scale graphene membranes pose challenges to their large-scale application. In this work, we present an innovative method for the rapid fabrication of nanoporous atomically thin membranes (NATMs) using wafer-scale graphene. We utilized argon plasma to treat the graphene wafers. Subsequently, a nonsolvent-induced phase inversion process using poly(vinylidene fluoride) (PVDF) was employed to create a porous support layer on a large scale. By wetting the PVDF with ethanol before etching the copper, we not only facilitated accelerated etchant diffusion during copper etching, but also introduced size-selective defects that enhance the separation performance. Our approach increases the etch rate of copper by 115 times compared to conventional transfer methods while maintaining the selectivity of the NATMs. Remarkably, the entire fabrication process can be completed on a 4 in. wafer within 1 h. This novel transfer method represents a significant advancement in overcoming the challenges of efficient graphene transfer without sacrificing the separation properties of graphene, thereby bringing graphene-based films closer to practical, real-world applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 19","pages":"28495–28502 28495–28502"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Fabrication of Nanoporous, Atomically Thin Membranes Based on Wafer-Scale Graphene\",\"authors\":\"Shihua Pang, Ningran Wu, Dongxu Zhang, Yaru Gao, Junhe Tong, Jinze Zheng, Ye Liu, Siyu Hu, Shanshan Wang, Ying Zhang, Junqiang Wang, Dandan Hou* and Luda Wang*, \",\"doi\":\"10.1021/acsami.5c0149010.1021/acsami.5c01490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Membrane separation technologies are garnering significant attention in both industry and academia due to their potential for energy savings and operational effectiveness. Among the promising materials for membranes, wafer-scale single-crystal graphene emerges as an exceptional candidate due to its ultraflat surface, superior mechanical strength, and chemical stability, making it ideal for the top-down fabrication of nanoporous separation membranes. Despite these promising properties, the slow etch rate of copper and the low transfer efficiency of wafer-scale graphene membranes pose challenges to their large-scale application. In this work, we present an innovative method for the rapid fabrication of nanoporous atomically thin membranes (NATMs) using wafer-scale graphene. We utilized argon plasma to treat the graphene wafers. Subsequently, a nonsolvent-induced phase inversion process using poly(vinylidene fluoride) (PVDF) was employed to create a porous support layer on a large scale. By wetting the PVDF with ethanol before etching the copper, we not only facilitated accelerated etchant diffusion during copper etching, but also introduced size-selective defects that enhance the separation performance. Our approach increases the etch rate of copper by 115 times compared to conventional transfer methods while maintaining the selectivity of the NATMs. Remarkably, the entire fabrication process can be completed on a 4 in. wafer within 1 h. This novel transfer method represents a significant advancement in overcoming the challenges of efficient graphene transfer without sacrificing the separation properties of graphene, thereby bringing graphene-based films closer to practical, real-world applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 19\",\"pages\":\"28495–28502 28495–28502\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01490\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01490","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrafast Fabrication of Nanoporous, Atomically Thin Membranes Based on Wafer-Scale Graphene
Membrane separation technologies are garnering significant attention in both industry and academia due to their potential for energy savings and operational effectiveness. Among the promising materials for membranes, wafer-scale single-crystal graphene emerges as an exceptional candidate due to its ultraflat surface, superior mechanical strength, and chemical stability, making it ideal for the top-down fabrication of nanoporous separation membranes. Despite these promising properties, the slow etch rate of copper and the low transfer efficiency of wafer-scale graphene membranes pose challenges to their large-scale application. In this work, we present an innovative method for the rapid fabrication of nanoporous atomically thin membranes (NATMs) using wafer-scale graphene. We utilized argon plasma to treat the graphene wafers. Subsequently, a nonsolvent-induced phase inversion process using poly(vinylidene fluoride) (PVDF) was employed to create a porous support layer on a large scale. By wetting the PVDF with ethanol before etching the copper, we not only facilitated accelerated etchant diffusion during copper etching, but also introduced size-selective defects that enhance the separation performance. Our approach increases the etch rate of copper by 115 times compared to conventional transfer methods while maintaining the selectivity of the NATMs. Remarkably, the entire fabrication process can be completed on a 4 in. wafer within 1 h. This novel transfer method represents a significant advancement in overcoming the challenges of efficient graphene transfer without sacrificing the separation properties of graphene, thereby bringing graphene-based films closer to practical, real-world applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.