Sarah Gregory , Fernando Piñero González , Doel Rivera–Laboy , Lani Southern
{"title":"用初等方法计算C(o3,6)极正交格拉斯曼码的最小距离","authors":"Sarah Gregory , Fernando Piñero González , Doel Rivera–Laboy , Lani Southern","doi":"10.1016/j.ffa.2025.102656","DOIUrl":null,"url":null,"abstract":"<div><div>The polar orthogonal Grassmann code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is the linear code associated to the polar orthogonal Grassmannian subvariety of the Grassmannian. The variety <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span> is the Grassmannian of 3-spaces contained in a hyperbolic quadric in <span><math><mi>P</mi><mi>G</mi><mo>(</mo><mn>6</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. In this manuscript we prove that the minimum distance of the polar orthogonal Grassmann code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <em>q</em> odd and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> for <em>q</em> even. We also prove that the minimum distance of <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>8</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> when <em>q</em> is even. Our technique is based on partitioning <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span> into different sets such that on each partition the code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is identified with evaluations of determinants of skew–symmetric matrices. Our bounds come from elementary algebraic methods counting the zeroes of particular classes of polynomials. The techniques presented in this paper may be adapted for other polar Grassmannians.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"107 ","pages":"Article 102656"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the minimum distance of the C(O3,6) polar orthogonal Grassmann code with elementary methods\",\"authors\":\"Sarah Gregory , Fernando Piñero González , Doel Rivera–Laboy , Lani Southern\",\"doi\":\"10.1016/j.ffa.2025.102656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The polar orthogonal Grassmann code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is the linear code associated to the polar orthogonal Grassmannian subvariety of the Grassmannian. The variety <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span> is the Grassmannian of 3-spaces contained in a hyperbolic quadric in <span><math><mi>P</mi><mi>G</mi><mo>(</mo><mn>6</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. In this manuscript we prove that the minimum distance of the polar orthogonal Grassmann code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <em>q</em> odd and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> for <em>q</em> even. We also prove that the minimum distance of <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>8</mn></mrow></msub><mo>)</mo></math></span> is <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> when <em>q</em> is even. Our technique is based on partitioning <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span> into different sets such that on each partition the code <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow></msub><mo>)</mo></math></span> is identified with evaluations of determinants of skew–symmetric matrices. Our bounds come from elementary algebraic methods counting the zeroes of particular classes of polynomials. The techniques presented in this paper may be adapted for other polar Grassmannians.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"107 \",\"pages\":\"Article 102656\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725000863\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000863","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Computing the minimum distance of the C(O3,6) polar orthogonal Grassmann code with elementary methods
The polar orthogonal Grassmann code is the linear code associated to the polar orthogonal Grassmannian subvariety of the Grassmannian. The variety is the Grassmannian of 3-spaces contained in a hyperbolic quadric in . In this manuscript we prove that the minimum distance of the polar orthogonal Grassmann code is for q odd and for q even. We also prove that the minimum distance of is when q is even. Our technique is based on partitioning into different sets such that on each partition the code is identified with evaluations of determinants of skew–symmetric matrices. Our bounds come from elementary algebraic methods counting the zeroes of particular classes of polynomials. The techniques presented in this paper may be adapted for other polar Grassmannians.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.