{"title":"AirGPT:引领对话AI与大气科学的融合","authors":"Jun Song, Chendong Ma, Maohao Ran","doi":"10.1038/s41612-025-01070-4","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) face significant limitations in specialized scientific domains due to their inability to perform data analysis and their tendency to generate inaccurate information. This challenge is particularly critical in air quality management, where precise analysis is essential for addressing climate change and pollution control initiatives. To bridge this gap, we present AirGPT, a computational framework that integrates conversational AI with atmospheric science expertise through a curated corpus of peer-reviewed literature and specialized data analysis capabilities. Through a novel architecture combining natural language processing and domain-specific analytical tools, AirGPT achieved higher accuracy in air quality assessments compared to standard LLMs, including GPT-4o. Experimental results demonstrate superior capabilities in providing accurate regulatory information, performing fundamental data analysis, and generating location-specific management recommendations, as validated through case studies in metropolitan areas such as Beijing.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"230 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AirGPT: pioneering the convergence of conversational AI with atmospheric science\",\"authors\":\"Jun Song, Chendong Ma, Maohao Ran\",\"doi\":\"10.1038/s41612-025-01070-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large language models (LLMs) face significant limitations in specialized scientific domains due to their inability to perform data analysis and their tendency to generate inaccurate information. This challenge is particularly critical in air quality management, where precise analysis is essential for addressing climate change and pollution control initiatives. To bridge this gap, we present AirGPT, a computational framework that integrates conversational AI with atmospheric science expertise through a curated corpus of peer-reviewed literature and specialized data analysis capabilities. Through a novel architecture combining natural language processing and domain-specific analytical tools, AirGPT achieved higher accuracy in air quality assessments compared to standard LLMs, including GPT-4o. Experimental results demonstrate superior capabilities in providing accurate regulatory information, performing fundamental data analysis, and generating location-specific management recommendations, as validated through case studies in metropolitan areas such as Beijing.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"230 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01070-4\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01070-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
AirGPT: pioneering the convergence of conversational AI with atmospheric science
Large language models (LLMs) face significant limitations in specialized scientific domains due to their inability to perform data analysis and their tendency to generate inaccurate information. This challenge is particularly critical in air quality management, where precise analysis is essential for addressing climate change and pollution control initiatives. To bridge this gap, we present AirGPT, a computational framework that integrates conversational AI with atmospheric science expertise through a curated corpus of peer-reviewed literature and specialized data analysis capabilities. Through a novel architecture combining natural language processing and domain-specific analytical tools, AirGPT achieved higher accuracy in air quality assessments compared to standard LLMs, including GPT-4o. Experimental results demonstrate superior capabilities in providing accurate regulatory information, performing fundamental data analysis, and generating location-specific management recommendations, as validated through case studies in metropolitan areas such as Beijing.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.