Benjamin T. Uveges, Gareth Izon, Christopher K. Junium, Shuhei Ono, Roger E. Summons
{"title":"在永久大气氧化前,好氧氮循环100米","authors":"Benjamin T. Uveges, Gareth Izon, Christopher K. Junium, Shuhei Ono, Roger E. Summons","doi":"10.1073/pnas.2423481122","DOIUrl":null,"url":null,"abstract":"The Great Oxidation Event (GOE) represents a major shift in Earth’s surficial redox balance. Delineating the driver(s) and tempo of the GOE and its impact on microbial evolution and biogeochemistry can be aided by characterizing the cycling of redox-sensitive elements such as nitrogen. While previous studies have shown that the transition to a broadly aerobic marine nitrogen cycle occurred in step with the final phase of the GOE ~2.33 billion years ago (Ga), an evolving understanding of the GOE as a dynamic oscillatory process and the narrow spatial distribution of existing studies highlight ambiguity in the marine nitrogen cycle in the lead up to permanent atmospheric oxygenation. Here, we present stable carbon (δ <jats:sup>13</jats:sup> C) and nitrogen (δ <jats:sup>15</jats:sup> N) isotope ratios derived from the ~2.43 Ga Duitschland and ~2.33 Ga Rooihoogte formations in four drill cores separated by hundreds of kilometers. A significant negative carbon isotope excursion (6 to 8‰) in the Duitschland Formation indicates massive oxidation of organic carbon in close association with a putative snowball Earth event and an earlier pulse of atmospheric oxygen at 2.43 Ga. Further, consistently positive δ <jats:sup>15</jats:sup> N values (≤ +20.3‰) within the Duitschland Formation, combined with a broad temporal shift across global δ <jats:sup>15</jats:sup> N records to a distribution comparable to modern marine sediments, signify an aerobic nitrogen cycle ~100 My earlier than previously accepted. Our results update a key timepoint in the evolution of the marine nitrogen cycle and the oxidation of the Earth’s surface surrounding the GOE.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"52 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic nitrogen cycle 100 My before permanent atmospheric oxygenation\",\"authors\":\"Benjamin T. Uveges, Gareth Izon, Christopher K. Junium, Shuhei Ono, Roger E. Summons\",\"doi\":\"10.1073/pnas.2423481122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Great Oxidation Event (GOE) represents a major shift in Earth’s surficial redox balance. Delineating the driver(s) and tempo of the GOE and its impact on microbial evolution and biogeochemistry can be aided by characterizing the cycling of redox-sensitive elements such as nitrogen. While previous studies have shown that the transition to a broadly aerobic marine nitrogen cycle occurred in step with the final phase of the GOE ~2.33 billion years ago (Ga), an evolving understanding of the GOE as a dynamic oscillatory process and the narrow spatial distribution of existing studies highlight ambiguity in the marine nitrogen cycle in the lead up to permanent atmospheric oxygenation. Here, we present stable carbon (δ <jats:sup>13</jats:sup> C) and nitrogen (δ <jats:sup>15</jats:sup> N) isotope ratios derived from the ~2.43 Ga Duitschland and ~2.33 Ga Rooihoogte formations in four drill cores separated by hundreds of kilometers. A significant negative carbon isotope excursion (6 to 8‰) in the Duitschland Formation indicates massive oxidation of organic carbon in close association with a putative snowball Earth event and an earlier pulse of atmospheric oxygen at 2.43 Ga. Further, consistently positive δ <jats:sup>15</jats:sup> N values (≤ +20.3‰) within the Duitschland Formation, combined with a broad temporal shift across global δ <jats:sup>15</jats:sup> N records to a distribution comparable to modern marine sediments, signify an aerobic nitrogen cycle ~100 My earlier than previously accepted. Our results update a key timepoint in the evolution of the marine nitrogen cycle and the oxidation of the Earth’s surface surrounding the GOE.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2423481122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2423481122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
大氧化事件(GOE)代表了地球表面氧化还原平衡的一次重大转变。描述氧化还原敏感元素(如氮)的循环特征有助于描述GOE的驱动因素和速度及其对微生物进化和生物地球化学的影响。虽然先前的研究表明,向广泛的好氧海洋氮循环的过渡与23.3亿年前(Ga)的GOE的最后阶段同步发生,但对GOE作为一个动态振荡过程的不断发展的理解和现有研究的狭窄空间分布突出了海洋氮循环在导致永久大气氧化的过程中的模糊性。在此,我们获得了4个相距数百公里的岩心中~2.43 Ga Duitschland和~2.33 Ga Rooihoogte地层的稳定碳(δ 13c)和氮(δ 15n)同位素比值。Duitschland组显著的负碳同位素偏移(6 ~ 8‰)表明有机碳的大量氧化与假定的雪球地球事件和2.43 Ga的早期大气氧脉冲密切相关。此外,Duitschland组δ 15 N值持续为正(≤+20.3‰),加上全球δ 15 N记录的广泛时间变化与现代海洋沉积物的分布相当,表明好氧氮循环比先前接受的时间早了约100万年。我们的研究结果更新了一个关键的时间点,在海洋氮循环的演变和地球表面氧化的GOE周围。
Aerobic nitrogen cycle 100 My before permanent atmospheric oxygenation
The Great Oxidation Event (GOE) represents a major shift in Earth’s surficial redox balance. Delineating the driver(s) and tempo of the GOE and its impact on microbial evolution and biogeochemistry can be aided by characterizing the cycling of redox-sensitive elements such as nitrogen. While previous studies have shown that the transition to a broadly aerobic marine nitrogen cycle occurred in step with the final phase of the GOE ~2.33 billion years ago (Ga), an evolving understanding of the GOE as a dynamic oscillatory process and the narrow spatial distribution of existing studies highlight ambiguity in the marine nitrogen cycle in the lead up to permanent atmospheric oxygenation. Here, we present stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope ratios derived from the ~2.43 Ga Duitschland and ~2.33 Ga Rooihoogte formations in four drill cores separated by hundreds of kilometers. A significant negative carbon isotope excursion (6 to 8‰) in the Duitschland Formation indicates massive oxidation of organic carbon in close association with a putative snowball Earth event and an earlier pulse of atmospheric oxygen at 2.43 Ga. Further, consistently positive δ 15 N values (≤ +20.3‰) within the Duitschland Formation, combined with a broad temporal shift across global δ 15 N records to a distribution comparable to modern marine sediments, signify an aerobic nitrogen cycle ~100 My earlier than previously accepted. Our results update a key timepoint in the evolution of the marine nitrogen cycle and the oxidation of the Earth’s surface surrounding the GOE.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.