硫空位富集的硫化铜纳米管提高了杂化电容去离子的脱盐效率

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-13 DOI:10.1002/smll.202411810
Hao Wei, Teng Wang, Renquan Hu, Zhen Sun, Irshad Hussain, Yong Yang
{"title":"硫空位富集的硫化铜纳米管提高了杂化电容去离子的脱盐效率","authors":"Hao Wei,&nbsp;Teng Wang,&nbsp;Renquan Hu,&nbsp;Zhen Sun,&nbsp;Irshad Hussain,&nbsp;Yong Yang","doi":"10.1002/smll.202411810","DOIUrl":null,"url":null,"abstract":"<p>Vacancy engineering is a promising approach to improve the performance of electrode materials in electrochemical desalination. However, common methods for introducing sulfur vacancies are difficult to avoid the disadvantages of requiring high temperature and pressure environments and complex synthesis conditions. Herein, an anion exchange is developed to synthesize hollow CuS nanotubes with tunable sulfur vacancies. Such a hollow structure with tunable sulfur vacancy enhances the electrical conductivity and mitigates the structural stress caused by electrochemical insertion, thereby boosting the electrochemical kinetic. The abundant sulfur vacancies can provide additional electrochemical adsorption pathways for capacitive deionization, leading to enhanced salt removal capacity. As a result, the optimized CuS nanotubes yield superior comprehensive desalination efficiency, with a salt adsorption capacity (SAC) of 42.32 mg g<sup>−1</sup>, and a salt adsorption rate of 4.84 mg g<sup>−1</sup> min<sup>−1</sup>. Moreover, the obtained CuS nanotube electrodes show a high efficiency in removing sodium ions in a 30 min simulated seawater experiment, resulting in an effective SAC of 41.33 mg g<sup>−1</sup> (as the sodium concentration of 1681.51 mg L<sup>−1</sup> NaCl, 50 mL) over 30 min. This study suggests a scalable method that highlights new insights for extending high desalination capacity materials with vacancies and hollow structures for energy conversion and storage.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 26","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur Vacancies Enriched Copper Sulfide Nanotubes Boost Desalination Efficiency of Hybrid Capacitive Deionization\",\"authors\":\"Hao Wei,&nbsp;Teng Wang,&nbsp;Renquan Hu,&nbsp;Zhen Sun,&nbsp;Irshad Hussain,&nbsp;Yong Yang\",\"doi\":\"10.1002/smll.202411810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vacancy engineering is a promising approach to improve the performance of electrode materials in electrochemical desalination. However, common methods for introducing sulfur vacancies are difficult to avoid the disadvantages of requiring high temperature and pressure environments and complex synthesis conditions. Herein, an anion exchange is developed to synthesize hollow CuS nanotubes with tunable sulfur vacancies. Such a hollow structure with tunable sulfur vacancy enhances the electrical conductivity and mitigates the structural stress caused by electrochemical insertion, thereby boosting the electrochemical kinetic. The abundant sulfur vacancies can provide additional electrochemical adsorption pathways for capacitive deionization, leading to enhanced salt removal capacity. As a result, the optimized CuS nanotubes yield superior comprehensive desalination efficiency, with a salt adsorption capacity (SAC) of 42.32 mg g<sup>−1</sup>, and a salt adsorption rate of 4.84 mg g<sup>−1</sup> min<sup>−1</sup>. Moreover, the obtained CuS nanotube electrodes show a high efficiency in removing sodium ions in a 30 min simulated seawater experiment, resulting in an effective SAC of 41.33 mg g<sup>−1</sup> (as the sodium concentration of 1681.51 mg L<sup>−1</sup> NaCl, 50 mL) over 30 min. This study suggests a scalable method that highlights new insights for extending high desalination capacity materials with vacancies and hollow structures for energy conversion and storage.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 26\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411810\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411810","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空位工程是提高电化学脱盐电极材料性能的一种很有前途的方法。然而,常用的引入硫空位的方法难以避免需要高温高压环境和复杂合成条件的缺点。本文利用阴离子交换技术合成了硫空位可调的空心cu纳米管。这种具有可调硫空位的空心结构提高了电导率,减轻了电化学插入引起的结构应力,从而提高了电化学动力学。丰富的硫空位可以为电容性去离子提供额外的电化学吸附途径,从而提高脱盐能力。结果表明,优化后的cu纳米管具有较好的综合脱盐效率,其盐吸附容量(SAC)为42.32 mg g−1,盐吸附速率为4.84 mg g−1 min−1。此外,所获得的cu纳米管电极在30 min的模拟海水实验中表现出高效率,30 min内的有效SAC为41.33 mg g−1(钠浓度为1681.51 mg L−1 NaCl, 50 mL)。该研究为扩展具有空位和空心结构的高脱盐能力材料提供了一种可扩展的方法,为能量转换和存储提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sulfur Vacancies Enriched Copper Sulfide Nanotubes Boost Desalination Efficiency of Hybrid Capacitive Deionization

Sulfur Vacancies Enriched Copper Sulfide Nanotubes Boost Desalination Efficiency of Hybrid Capacitive Deionization

Vacancy engineering is a promising approach to improve the performance of electrode materials in electrochemical desalination. However, common methods for introducing sulfur vacancies are difficult to avoid the disadvantages of requiring high temperature and pressure environments and complex synthesis conditions. Herein, an anion exchange is developed to synthesize hollow CuS nanotubes with tunable sulfur vacancies. Such a hollow structure with tunable sulfur vacancy enhances the electrical conductivity and mitigates the structural stress caused by electrochemical insertion, thereby boosting the electrochemical kinetic. The abundant sulfur vacancies can provide additional electrochemical adsorption pathways for capacitive deionization, leading to enhanced salt removal capacity. As a result, the optimized CuS nanotubes yield superior comprehensive desalination efficiency, with a salt adsorption capacity (SAC) of 42.32 mg g−1, and a salt adsorption rate of 4.84 mg g−1 min−1. Moreover, the obtained CuS nanotube electrodes show a high efficiency in removing sodium ions in a 30 min simulated seawater experiment, resulting in an effective SAC of 41.33 mg g−1 (as the sodium concentration of 1681.51 mg L−1 NaCl, 50 mL) over 30 min. This study suggests a scalable method that highlights new insights for extending high desalination capacity materials with vacancies and hollow structures for energy conversion and storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信