Mrinal Kanti Kabiraz, Hafidatul Wahidah, Jong Wook Hong, Sang-Il Choi
{"title":"铂金属:可持续能源解决方案的先进电催化剂","authors":"Mrinal Kanti Kabiraz, Hafidatul Wahidah, Jong Wook Hong, Sang-Il Choi","doi":"10.1002/smll.202500858","DOIUrl":null,"url":null,"abstract":"<p>Platinum (Pt) metallenes, an emerging class of ultrathin 2D nanomaterials, have redefined the field of electrocatalysis, offering physicochemical properties that are completely new to conventional catalyst materials. Characterized by their high surface-to-volume ratios, abundant active sites, and tunable electronic structures, Pt metallenes exhibit remarkable efficiencies across key reactions in fuel cells and electrolyzers, including the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and liquid fuel oxidation reaction (LFOR). Overcoming the inherent limitations of rigid Pt-Pt bonds and the face-centered cubic structure, recent advances in synthesis, such as bottom-up methods and top-down exfoliation, have enabled precise control over the atomic thickness, morphology, and composition of 2D Pt metallenes. In addition, advanced engineering strategies, such as defect creation, ligand modulation, and strain optimization, have further enhanced the intrinsic activity of the active sites and tailored the electronic structures to accelerate reaction kinetics. This review provides a comprehensive analysis of the latest progress in Pt metallene research, emphasizing challenges in synthesis, structural design, and electrocatalytic applications. It is anticipated that the Pt metallenes, promising catalysts for sustainable energy technologies, will offer transformative solutions for efficient energy conversion and environmental remediation.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 27","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platinum Metallenes: Advanced Electrocatalysts for Sustainable Energy Solutions\",\"authors\":\"Mrinal Kanti Kabiraz, Hafidatul Wahidah, Jong Wook Hong, Sang-Il Choi\",\"doi\":\"10.1002/smll.202500858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Platinum (Pt) metallenes, an emerging class of ultrathin 2D nanomaterials, have redefined the field of electrocatalysis, offering physicochemical properties that are completely new to conventional catalyst materials. Characterized by their high surface-to-volume ratios, abundant active sites, and tunable electronic structures, Pt metallenes exhibit remarkable efficiencies across key reactions in fuel cells and electrolyzers, including the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and liquid fuel oxidation reaction (LFOR). Overcoming the inherent limitations of rigid Pt-Pt bonds and the face-centered cubic structure, recent advances in synthesis, such as bottom-up methods and top-down exfoliation, have enabled precise control over the atomic thickness, morphology, and composition of 2D Pt metallenes. In addition, advanced engineering strategies, such as defect creation, ligand modulation, and strain optimization, have further enhanced the intrinsic activity of the active sites and tailored the electronic structures to accelerate reaction kinetics. This review provides a comprehensive analysis of the latest progress in Pt metallene research, emphasizing challenges in synthesis, structural design, and electrocatalytic applications. It is anticipated that the Pt metallenes, promising catalysts for sustainable energy technologies, will offer transformative solutions for efficient energy conversion and environmental remediation.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 27\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500858\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500858","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Platinum Metallenes: Advanced Electrocatalysts for Sustainable Energy Solutions
Platinum (Pt) metallenes, an emerging class of ultrathin 2D nanomaterials, have redefined the field of electrocatalysis, offering physicochemical properties that are completely new to conventional catalyst materials. Characterized by their high surface-to-volume ratios, abundant active sites, and tunable electronic structures, Pt metallenes exhibit remarkable efficiencies across key reactions in fuel cells and electrolyzers, including the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and liquid fuel oxidation reaction (LFOR). Overcoming the inherent limitations of rigid Pt-Pt bonds and the face-centered cubic structure, recent advances in synthesis, such as bottom-up methods and top-down exfoliation, have enabled precise control over the atomic thickness, morphology, and composition of 2D Pt metallenes. In addition, advanced engineering strategies, such as defect creation, ligand modulation, and strain optimization, have further enhanced the intrinsic activity of the active sites and tailored the electronic structures to accelerate reaction kinetics. This review provides a comprehensive analysis of the latest progress in Pt metallene research, emphasizing challenges in synthesis, structural design, and electrocatalytic applications. It is anticipated that the Pt metallenes, promising catalysts for sustainable energy technologies, will offer transformative solutions for efficient energy conversion and environmental remediation.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.