非对称原子扩散工程磁纳米界面增强低频电磁波衰减

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Min Liu, Guanyu Chen, Guisheng Liang, Yuetong Qian, Liting Yang, Renchao Che
{"title":"非对称原子扩散工程磁纳米界面增强低频电磁波衰减","authors":"Min Liu, Guanyu Chen, Guisheng Liang, Yuetong Qian, Liting Yang, Renchao Che","doi":"10.1002/adfm.202508174","DOIUrl":null,"url":null,"abstract":"Heterostructured magnetic nanomaterials, with their multilevel dielectric polarization and synergistic magnetic-dielectric effects, hold highly promising candidates for low-frequency electromagnetic (EM) wave absorption. However, fully leveraging these functional advantages requires precise manipulation of interfacial architectures, posing a formidable challenge in nanoscale material design. Here, an asymmetric diffusion-driven heterointerface regulation strategy is developed to achieve precise control over nanoscale magnetic heterointerfaces within biphase nanoparticles (NPs). This diffusion asymmetry, characterized by the rapid outward migration of Fe atoms compared to the slower inward diffusion of Ni atoms, triggers the nucleation and gradient distribution of the medium-entropy FeCoNi phase, enabling the rational modulation of FeCoNi/Fe<sub>7</sub>Co<sub>3</sub> nano-interface distribution along the radial direction. The tailored FeCoNi/Fe<sub>7</sub>Co<sub>3</sub>@C heterostructures possess exceptionally low-frequency electromagnetic energy conversion capabilities, effectively covering the entire C-band and extending into the S-band. This outstanding performance arises from the synergistic effects of i) enhanced local electric field and dipole relaxation polarization induced by the abundant nano-interfaces and ii) improved magnetic anisotropy, driven by precisely controlled dipole-dipole interactions dictated by the tunable magnetic nano-interface distribution. This study provides fresh insights into the design of magnetic heterostructures and fundamental mechanisms governing heterostructure-driven low-frequency microwave absorption, paving the way for next-generation EM wave-absorbing materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"8 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Atomic Diffusion-Engineered Magnetic Nano-Interfaces for Enhanced Low-Frequency Electromagnetic Wave Attenuation\",\"authors\":\"Min Liu, Guanyu Chen, Guisheng Liang, Yuetong Qian, Liting Yang, Renchao Che\",\"doi\":\"10.1002/adfm.202508174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterostructured magnetic nanomaterials, with their multilevel dielectric polarization and synergistic magnetic-dielectric effects, hold highly promising candidates for low-frequency electromagnetic (EM) wave absorption. However, fully leveraging these functional advantages requires precise manipulation of interfacial architectures, posing a formidable challenge in nanoscale material design. Here, an asymmetric diffusion-driven heterointerface regulation strategy is developed to achieve precise control over nanoscale magnetic heterointerfaces within biphase nanoparticles (NPs). This diffusion asymmetry, characterized by the rapid outward migration of Fe atoms compared to the slower inward diffusion of Ni atoms, triggers the nucleation and gradient distribution of the medium-entropy FeCoNi phase, enabling the rational modulation of FeCoNi/Fe<sub>7</sub>Co<sub>3</sub> nano-interface distribution along the radial direction. The tailored FeCoNi/Fe<sub>7</sub>Co<sub>3</sub>@C heterostructures possess exceptionally low-frequency electromagnetic energy conversion capabilities, effectively covering the entire C-band and extending into the S-band. This outstanding performance arises from the synergistic effects of i) enhanced local electric field and dipole relaxation polarization induced by the abundant nano-interfaces and ii) improved magnetic anisotropy, driven by precisely controlled dipole-dipole interactions dictated by the tunable magnetic nano-interface distribution. This study provides fresh insights into the design of magnetic heterostructures and fundamental mechanisms governing heterostructure-driven low-frequency microwave absorption, paving the way for next-generation EM wave-absorbing materials.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202508174\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202508174","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异质结构磁性纳米材料具有多层介电极化和协同磁介电效应,在低频电磁波吸收领域具有很高的应用前景。然而,充分利用这些功能优势需要对界面结构进行精确的操作,这对纳米级材料设计提出了巨大的挑战。本文提出了一种非对称扩散驱动的异质界面调控策略,以实现对双相纳米颗粒(NPs)内纳米级磁性异质界面的精确控制。这种扩散不对称(Fe原子向外快速迁移,而Ni原子向内缓慢扩散)触发了中熵FeCoNi相的成核和梯度分布,使FeCoNi/Fe7Co3纳米界面沿径向分布得到合理调制。量身定制的FeCoNi/Fe7Co3@C异质结构具有特殊的低频电磁能量转换能力,有效覆盖整个c波段并延伸到s波段。这种优异的性能来自于以下两方面的协同效应:1)丰富的纳米界面诱导的局部电场增强和偶极弛豫极化;2)由可调谐的磁性纳米界面分布决定的精确控制的偶极-偶极相互作用驱动的磁各向异性的改善。该研究为磁异质结构的设计和控制异质结构驱动的低频微波吸收的基本机制提供了新的见解,为下一代电磁波吸收材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetric Atomic Diffusion-Engineered Magnetic Nano-Interfaces for Enhanced Low-Frequency Electromagnetic Wave Attenuation

Asymmetric Atomic Diffusion-Engineered Magnetic Nano-Interfaces for Enhanced Low-Frequency Electromagnetic Wave Attenuation
Heterostructured magnetic nanomaterials, with their multilevel dielectric polarization and synergistic magnetic-dielectric effects, hold highly promising candidates for low-frequency electromagnetic (EM) wave absorption. However, fully leveraging these functional advantages requires precise manipulation of interfacial architectures, posing a formidable challenge in nanoscale material design. Here, an asymmetric diffusion-driven heterointerface regulation strategy is developed to achieve precise control over nanoscale magnetic heterointerfaces within biphase nanoparticles (NPs). This diffusion asymmetry, characterized by the rapid outward migration of Fe atoms compared to the slower inward diffusion of Ni atoms, triggers the nucleation and gradient distribution of the medium-entropy FeCoNi phase, enabling the rational modulation of FeCoNi/Fe7Co3 nano-interface distribution along the radial direction. The tailored FeCoNi/Fe7Co3@C heterostructures possess exceptionally low-frequency electromagnetic energy conversion capabilities, effectively covering the entire C-band and extending into the S-band. This outstanding performance arises from the synergistic effects of i) enhanced local electric field and dipole relaxation polarization induced by the abundant nano-interfaces and ii) improved magnetic anisotropy, driven by precisely controlled dipole-dipole interactions dictated by the tunable magnetic nano-interface distribution. This study provides fresh insights into the design of magnetic heterostructures and fundamental mechanisms governing heterostructure-driven low-frequency microwave absorption, paving the way for next-generation EM wave-absorbing materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信