氧化物超晶格中界面对称工程的轨道和自旋重建

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-13 DOI:10.1002/smll.202500089
Aryan Keshri, Sourav Chowdhury, Naveen Goyal, Wasim Akram, Santanu Pakhira, Peter Nagel, Stefan Schuppler, Sadanand Powar, Mohit Tanwani, Pushpendra Gupta, Anju Ahlawat, Tuhin Maity, N. Ravishankar, Mortiz Hoesch, Sujit Das
{"title":"氧化物超晶格中界面对称工程的轨道和自旋重建","authors":"Aryan Keshri,&nbsp;Sourav Chowdhury,&nbsp;Naveen Goyal,&nbsp;Wasim Akram,&nbsp;Santanu Pakhira,&nbsp;Peter Nagel,&nbsp;Stefan Schuppler,&nbsp;Sadanand Powar,&nbsp;Mohit Tanwani,&nbsp;Pushpendra Gupta,&nbsp;Anju Ahlawat,&nbsp;Tuhin Maity,&nbsp;N. Ravishankar,&nbsp;Mortiz Hoesch,&nbsp;Sujit Das","doi":"10.1002/smll.202500089","DOIUrl":null,"url":null,"abstract":"<p>Phase transitions in transition metal oxides, particularly those involving charge, orbital, and spin order, give rise to emergent electronic and magnetic phenomena, making these materials critical to the advancement of spintronics and quantum technologies. SrRuO<sub>3</sub> (SRO) and LaNiO<sub>3</sub> (LNO) have distinct physical properties. SRO is characterized by its metallic conductivity, ferromagnetism, and strong spin polarization, while LNO exhibits pronounced electron correlations and sensitivity to structural distortion. However, advancements in fabrication techniques and interface engineering have made it easier to integrate these materials into combined systems. In this work, the [5 nm SRO/t nm LNO]₁₀ superlattices are explored, where the interfacial coupling mechanisms give rise to intriguing electronic phenomena such as charge transfer, orbital hybridization, and spin rearrangement. The thickness-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) reveal a Ru-to-Ni charge transfer. Additionally, X-ray linear dichroism (XLD) measurements demonstrate reduced structural disorder and enhanced Ru-4d/Ni-3d orbital hybridization, mediated by O-2p states. This study addresses key challenges in developing functional oxide superlattices using mechanisms such as charge transfer, orbital hybridization, and spin reconstruction which offer new pathways for their application in next-generation spintronic devices and quantum materials.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 30","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital and Spin Reconstruction by Interface Symmetry Engineering in Oxide Superlattices\",\"authors\":\"Aryan Keshri,&nbsp;Sourav Chowdhury,&nbsp;Naveen Goyal,&nbsp;Wasim Akram,&nbsp;Santanu Pakhira,&nbsp;Peter Nagel,&nbsp;Stefan Schuppler,&nbsp;Sadanand Powar,&nbsp;Mohit Tanwani,&nbsp;Pushpendra Gupta,&nbsp;Anju Ahlawat,&nbsp;Tuhin Maity,&nbsp;N. Ravishankar,&nbsp;Mortiz Hoesch,&nbsp;Sujit Das\",\"doi\":\"10.1002/smll.202500089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phase transitions in transition metal oxides, particularly those involving charge, orbital, and spin order, give rise to emergent electronic and magnetic phenomena, making these materials critical to the advancement of spintronics and quantum technologies. SrRuO<sub>3</sub> (SRO) and LaNiO<sub>3</sub> (LNO) have distinct physical properties. SRO is characterized by its metallic conductivity, ferromagnetism, and strong spin polarization, while LNO exhibits pronounced electron correlations and sensitivity to structural distortion. However, advancements in fabrication techniques and interface engineering have made it easier to integrate these materials into combined systems. In this work, the [5 nm SRO/t nm LNO]₁₀ superlattices are explored, where the interfacial coupling mechanisms give rise to intriguing electronic phenomena such as charge transfer, orbital hybridization, and spin rearrangement. The thickness-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) reveal a Ru-to-Ni charge transfer. Additionally, X-ray linear dichroism (XLD) measurements demonstrate reduced structural disorder and enhanced Ru-4d/Ni-3d orbital hybridization, mediated by O-2p states. This study addresses key challenges in developing functional oxide superlattices using mechanisms such as charge transfer, orbital hybridization, and spin reconstruction which offer new pathways for their application in next-generation spintronic devices and quantum materials.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 30\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500089\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物中的相变,特别是那些涉及电荷、轨道和自旋顺序的相变,产生了新兴的电子和磁性现象,使这些材料对自旋电子学和量子技术的进步至关重要。SrRuO3 (SRO)和LaNiO3 (LNO)具有不同的物理性质。SRO具有金属导电性、铁磁性和强自旋极化的特点,而LNO具有明显的电子相关性和对结构畸变的敏感性。然而,制造技术和界面工程的进步使得将这些材料集成到组合系统中变得更加容易。在这项工作中,我们探索了[5 nm SRO/t nm LNO]₁0超晶格,其中的界面耦合机制产生了有趣的电子现象,如电荷转移、轨道杂化和自旋重排。厚度相关的x射线吸收光谱(XAS)和x射线磁圆二色性(XMCD)揭示了钌到镍的电荷转移。此外,x射线线性二色性(XLD)测量表明,在O-2p态介导下,结构无序性降低,Ru-4d/Ni-3d轨道杂化增强。本研究解决了利用电荷转移、轨道杂化和自旋重建等机制开发功能氧化物超晶格的关键挑战,为其在下一代自旋电子器件和量子材料中的应用提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orbital and Spin Reconstruction by Interface Symmetry Engineering in Oxide Superlattices

Orbital and Spin Reconstruction by Interface Symmetry Engineering in Oxide Superlattices

Orbital and Spin Reconstruction by Interface Symmetry Engineering in Oxide Superlattices

Phase transitions in transition metal oxides, particularly those involving charge, orbital, and spin order, give rise to emergent electronic and magnetic phenomena, making these materials critical to the advancement of spintronics and quantum technologies. SrRuO3 (SRO) and LaNiO3 (LNO) have distinct physical properties. SRO is characterized by its metallic conductivity, ferromagnetism, and strong spin polarization, while LNO exhibits pronounced electron correlations and sensitivity to structural distortion. However, advancements in fabrication techniques and interface engineering have made it easier to integrate these materials into combined systems. In this work, the [5 nm SRO/t nm LNO]₁₀ superlattices are explored, where the interfacial coupling mechanisms give rise to intriguing electronic phenomena such as charge transfer, orbital hybridization, and spin rearrangement. The thickness-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) reveal a Ru-to-Ni charge transfer. Additionally, X-ray linear dichroism (XLD) measurements demonstrate reduced structural disorder and enhanced Ru-4d/Ni-3d orbital hybridization, mediated by O-2p states. This study addresses key challenges in developing functional oxide superlattices using mechanisms such as charge transfer, orbital hybridization, and spin reconstruction which offer new pathways for their application in next-generation spintronic devices and quantum materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信