范德华异质结构层间激子复合的摩擦调谐

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zejun Sun, Puyu Ge, Shihong Chen, Shuchun Huang, Haowen Xu, Chong Wang, Rui Han, Xiushuo Zhang, Huixian Liu, Jianbin Luo, Linmao Qian, Junhui Sun, Dameng Liu, Huan Liu
{"title":"范德华异质结构层间激子复合的摩擦调谐","authors":"Zejun Sun, Puyu Ge, Shihong Chen, Shuchun Huang, Haowen Xu, Chong Wang, Rui Han, Xiushuo Zhang, Huixian Liu, Jianbin Luo, Linmao Qian, Junhui Sun, Dameng Liu, Huan Liu","doi":"10.1002/adma.202502986","DOIUrl":null,"url":null,"abstract":"Van der Waals heterostructures combine low friction with excellent optoelectronic properties, making them suitable for opto-nano-electromechanical systems. While the long lifetime of interlayer excitons in these materials helps reduce energy loss, friction in mechanical systems is unavoidable and can shorten the exciton recombination lifetime, undermining the low-friction benefits. Despite its importance, the fundamental mechanism underlying friction-induced changes in exciton recombination remains unexplored, mainly due to the difficulty of probing long-lifetime exciton recombination at friction interfaces. Here, time-resolved photoluminescence combined with an atomic force microscope is used to detect exciton recombination at the friction interface of MoS<sub>2</sub>/WS<sub>2</sub> heterostructures. The findings show that friction generates defects, which trap electrons and create additional recombination pathways, shortening exciton recombination lifetimes. This, in turn, increases friction by altering charge density evolution and raising the friction sliding barrier. Density functional theory calculations confirm this mechanism. These results reveal how friction influences exciton recombination, paving the way for advancements in low-friction nano-opto-electromechanical devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"57 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction Tuning of Interlayer Exciton Recombination in Van der Waals Heterostructures\",\"authors\":\"Zejun Sun, Puyu Ge, Shihong Chen, Shuchun Huang, Haowen Xu, Chong Wang, Rui Han, Xiushuo Zhang, Huixian Liu, Jianbin Luo, Linmao Qian, Junhui Sun, Dameng Liu, Huan Liu\",\"doi\":\"10.1002/adma.202502986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Van der Waals heterostructures combine low friction with excellent optoelectronic properties, making them suitable for opto-nano-electromechanical systems. While the long lifetime of interlayer excitons in these materials helps reduce energy loss, friction in mechanical systems is unavoidable and can shorten the exciton recombination lifetime, undermining the low-friction benefits. Despite its importance, the fundamental mechanism underlying friction-induced changes in exciton recombination remains unexplored, mainly due to the difficulty of probing long-lifetime exciton recombination at friction interfaces. Here, time-resolved photoluminescence combined with an atomic force microscope is used to detect exciton recombination at the friction interface of MoS<sub>2</sub>/WS<sub>2</sub> heterostructures. The findings show that friction generates defects, which trap electrons and create additional recombination pathways, shortening exciton recombination lifetimes. This, in turn, increases friction by altering charge density evolution and raising the friction sliding barrier. Density functional theory calculations confirm this mechanism. These results reveal how friction influences exciton recombination, paving the way for advancements in low-friction nano-opto-electromechanical devices.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502986\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502986","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

范德华异质结构结合了低摩擦和优异的光电性能,使其适合于光纳米机电系统。虽然这些材料中层间激子的长寿命有助于减少能量损失,但机械系统中的摩擦是不可避免的,并且会缩短激子复合寿命,从而破坏了低摩擦的好处。尽管它很重要,但摩擦引起的激子复合变化的基本机制仍未被探索,这主要是由于在摩擦界面上探测长寿命激子复合的困难。本文采用时间分辨光致发光结合原子力显微镜,检测了MoS2/WS2异质结构摩擦界面处的激子复合。研究结果表明,摩擦会产生缺陷,这些缺陷会捕获电子并产生额外的重组途径,缩短激子重组的寿命。这反过来又通过改变电荷密度演变和提高摩擦滑动势垒来增加摩擦。密度泛函理论计算证实了这一机理。这些结果揭示了摩擦如何影响激子重组,为低摩擦纳米光电机电器件的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Friction Tuning of Interlayer Exciton Recombination in Van der Waals Heterostructures

Friction Tuning of Interlayer Exciton Recombination in Van der Waals Heterostructures
Van der Waals heterostructures combine low friction with excellent optoelectronic properties, making them suitable for opto-nano-electromechanical systems. While the long lifetime of interlayer excitons in these materials helps reduce energy loss, friction in mechanical systems is unavoidable and can shorten the exciton recombination lifetime, undermining the low-friction benefits. Despite its importance, the fundamental mechanism underlying friction-induced changes in exciton recombination remains unexplored, mainly due to the difficulty of probing long-lifetime exciton recombination at friction interfaces. Here, time-resolved photoluminescence combined with an atomic force microscope is used to detect exciton recombination at the friction interface of MoS2/WS2 heterostructures. The findings show that friction generates defects, which trap electrons and create additional recombination pathways, shortening exciton recombination lifetimes. This, in turn, increases friction by altering charge density evolution and raising the friction sliding barrier. Density functional theory calculations confirm this mechanism. These results reveal how friction influences exciton recombination, paving the way for advancements in low-friction nano-opto-electromechanical devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信