{"title":"在波特兰岩基胶凝悬浮液中实现二氧化碳矿化和主动控制","authors":"Xiaodi Dai , Sharu Bhagavathi Kandy , Rui Xiao , Manas Sarkar , Shubham Wani , Thiyagarajan Ranganathan , Narayanan Neithalath , Aditya Kumar , Mathieu Bauchy , Edward Garboczi , Torben Gädt , Samanvaya Srivastava , Gaurav Sant","doi":"10.1016/j.cemconcomp.2025.106123","DOIUrl":null,"url":null,"abstract":"<div><div>The real-time control of concrete's stiffening allows users to better control pumping and extrusion during 3D-printing processes. Here, a portlandite-based cementitious formulation (i.e., slurry or suspension) that features the potential for rapid CO<sub>2</sub> uptake is adapted for 3D-printing applications. In particular, we showcase a portlandite-fly ash binder system combined with a thermoresponsive polymer, wherein precise control via thermal activation allows set control and rapid solidification. Through the thermally induced polymerization of polyacrylamide, the hybrid binder system rapidly undergoes stiffening at trigger onset temperatures ranging from 60 °C to 80 °C, exhibiting average stiffening rates of up to 2600 Pa s<sup>−1</sup>. The addition of fly ash is noted to extend the open time, reduce the yield stress, and improve pumpability. The polymerization process contributes to initial strength gain. Subsequently, portlandite's carbonation and fly ash's pozzolanic reaction enhances mechanical strength. By combining set control and CO<sub>2</sub> mineralization, this work pioneers the development of CO<sub>2</sub>-cured 3D-printed construction materials.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"162 ","pages":"Article 106123"},"PeriodicalIF":10.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling carbon dioxide mineralization and active set control in portlandite-based cementitious suspensions\",\"authors\":\"Xiaodi Dai , Sharu Bhagavathi Kandy , Rui Xiao , Manas Sarkar , Shubham Wani , Thiyagarajan Ranganathan , Narayanan Neithalath , Aditya Kumar , Mathieu Bauchy , Edward Garboczi , Torben Gädt , Samanvaya Srivastava , Gaurav Sant\",\"doi\":\"10.1016/j.cemconcomp.2025.106123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The real-time control of concrete's stiffening allows users to better control pumping and extrusion during 3D-printing processes. Here, a portlandite-based cementitious formulation (i.e., slurry or suspension) that features the potential for rapid CO<sub>2</sub> uptake is adapted for 3D-printing applications. In particular, we showcase a portlandite-fly ash binder system combined with a thermoresponsive polymer, wherein precise control via thermal activation allows set control and rapid solidification. Through the thermally induced polymerization of polyacrylamide, the hybrid binder system rapidly undergoes stiffening at trigger onset temperatures ranging from 60 °C to 80 °C, exhibiting average stiffening rates of up to 2600 Pa s<sup>−1</sup>. The addition of fly ash is noted to extend the open time, reduce the yield stress, and improve pumpability. The polymerization process contributes to initial strength gain. Subsequently, portlandite's carbonation and fly ash's pozzolanic reaction enhances mechanical strength. By combining set control and CO<sub>2</sub> mineralization, this work pioneers the development of CO<sub>2</sub>-cured 3D-printed construction materials.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"162 \",\"pages\":\"Article 106123\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946525002057\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525002057","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Enabling carbon dioxide mineralization and active set control in portlandite-based cementitious suspensions
The real-time control of concrete's stiffening allows users to better control pumping and extrusion during 3D-printing processes. Here, a portlandite-based cementitious formulation (i.e., slurry or suspension) that features the potential for rapid CO2 uptake is adapted for 3D-printing applications. In particular, we showcase a portlandite-fly ash binder system combined with a thermoresponsive polymer, wherein precise control via thermal activation allows set control and rapid solidification. Through the thermally induced polymerization of polyacrylamide, the hybrid binder system rapidly undergoes stiffening at trigger onset temperatures ranging from 60 °C to 80 °C, exhibiting average stiffening rates of up to 2600 Pa s−1. The addition of fly ash is noted to extend the open time, reduce the yield stress, and improve pumpability. The polymerization process contributes to initial strength gain. Subsequently, portlandite's carbonation and fly ash's pozzolanic reaction enhances mechanical strength. By combining set control and CO2 mineralization, this work pioneers the development of CO2-cured 3D-printed construction materials.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.