对小型农村社区废水的SARS-CoV-2监测发现缺乏疫苗覆盖率是Omicron爆发的影响因素

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Solana Narum , Thibault Stalder , Benjamin Ridenhour , Erik R. Coats
{"title":"对小型农村社区废水的SARS-CoV-2监测发现缺乏疫苗覆盖率是Omicron爆发的影响因素","authors":"Solana Narum ,&nbsp;Thibault Stalder ,&nbsp;Benjamin Ridenhour ,&nbsp;Erik R. Coats","doi":"10.1016/j.watres.2025.123818","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater-based epidemiology (WBE) can provide critical early warnings to aid public health, which can be particularly beneficial in rural communities with limited access to health care. Spikes of SARS-CoV-2 RNA concentration in wastewater have been used to represent infections in a community, but wastewater holds a wealth of information that has not been explored yet. The objectives of this research were to expand the use of WBE to 1) determine the dynamic of SARS-CoV-2 variants in rural communities, and 2) evaluate the relationship between community vaccination status and the outbreak of a variant. We quantified the concentration of SARS-CoV-2 RNA, as well as specific mutations that are consistent with Delta and Omicron in influent raw wastewater samples collected from wastewater treatment facilities (WWTFs) for five populations with &lt;1000 residents and one larger population in Latah County, ID. A binomial generalized linear model using the percent of the population with protection against Omicron from the initial vaccines and the booster shot was able to predict the probability of an uptick in Omicron concentration in wastewater with an accuracy of 0.96. Evaluation of vaccination data indicate that the spike in Omicron infections in December 2021 in the studied towns was linked to low levels of population protection from the initial shots of the COVID-19 vaccine against Omicron infection and limited uptake of booster shots in these communities. Despite difficulties with applying WBE in rural regions, this study shows that beyond evaluating spikes of viral infections, WBE can be used to evaluate the effect of a population’s vaccine coverage on SARS-CoV-2 variant dynamics.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123818"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 surveillance of wastewater in small rural communities identifies lack of vaccine coverage as influence of omicron outbreak\",\"authors\":\"Solana Narum ,&nbsp;Thibault Stalder ,&nbsp;Benjamin Ridenhour ,&nbsp;Erik R. Coats\",\"doi\":\"10.1016/j.watres.2025.123818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wastewater-based epidemiology (WBE) can provide critical early warnings to aid public health, which can be particularly beneficial in rural communities with limited access to health care. Spikes of SARS-CoV-2 RNA concentration in wastewater have been used to represent infections in a community, but wastewater holds a wealth of information that has not been explored yet. The objectives of this research were to expand the use of WBE to 1) determine the dynamic of SARS-CoV-2 variants in rural communities, and 2) evaluate the relationship between community vaccination status and the outbreak of a variant. We quantified the concentration of SARS-CoV-2 RNA, as well as specific mutations that are consistent with Delta and Omicron in influent raw wastewater samples collected from wastewater treatment facilities (WWTFs) for five populations with &lt;1000 residents and one larger population in Latah County, ID. A binomial generalized linear model using the percent of the population with protection against Omicron from the initial vaccines and the booster shot was able to predict the probability of an uptick in Omicron concentration in wastewater with an accuracy of 0.96. Evaluation of vaccination data indicate that the spike in Omicron infections in December 2021 in the studied towns was linked to low levels of population protection from the initial shots of the COVID-19 vaccine against Omicron infection and limited uptake of booster shots in these communities. Despite difficulties with applying WBE in rural regions, this study shows that beyond evaluating spikes of viral infections, WBE can be used to evaluate the effect of a population’s vaccine coverage on SARS-CoV-2 variant dynamics.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"283 \",\"pages\":\"Article 123818\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425007274\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425007274","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

基于废水的流行病学(WBE)可以提供关键的早期预警,以援助公共卫生,这对获得卫生保健机会有限的农村社区尤其有益。废水中SARS-CoV-2 RNA浓度的峰值已被用来代表社区中的感染,但废水中含有大量尚未被探索的信息。本研究的目的是扩大WBE的使用范围,以1)确定农村社区SARS-CoV-2变体的动态,以及2)评估社区疫苗接种状况与变体爆发之间的关系。我们量化了从污水处理设施(WWTFs)收集的流入原始废水样本中SARS-CoV-2 RNA的浓度,以及与Delta和Omicron一致的特定突变,这些样本来自德克萨斯州拉塔县5个人口少于1000人的人群和1个人口更多的人群。采用二项广义线性模型,利用接种了最初疫苗和加强疫苗的抗欧米克隆人群的百分比,能够预测废水中欧米克隆浓度上升的概率,准确率为0.96。对疫苗接种数据的评估表明,2021年12月所研究城镇中Omicron感染的激增与人群对最初接种针对Omicron感染的COVID-19疫苗的保护水平较低以及这些社区对加强疫苗的吸收有限有关。尽管在农村地区应用WBE存在困难,但本研究表明,除了评估病毒感染高峰外,WBE还可用于评估人群疫苗覆盖率对SARS-CoV-2变异动态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SARS-CoV-2 surveillance of wastewater in small rural communities identifies lack of vaccine coverage as influence of omicron outbreak
Wastewater-based epidemiology (WBE) can provide critical early warnings to aid public health, which can be particularly beneficial in rural communities with limited access to health care. Spikes of SARS-CoV-2 RNA concentration in wastewater have been used to represent infections in a community, but wastewater holds a wealth of information that has not been explored yet. The objectives of this research were to expand the use of WBE to 1) determine the dynamic of SARS-CoV-2 variants in rural communities, and 2) evaluate the relationship between community vaccination status and the outbreak of a variant. We quantified the concentration of SARS-CoV-2 RNA, as well as specific mutations that are consistent with Delta and Omicron in influent raw wastewater samples collected from wastewater treatment facilities (WWTFs) for five populations with <1000 residents and one larger population in Latah County, ID. A binomial generalized linear model using the percent of the population with protection against Omicron from the initial vaccines and the booster shot was able to predict the probability of an uptick in Omicron concentration in wastewater with an accuracy of 0.96. Evaluation of vaccination data indicate that the spike in Omicron infections in December 2021 in the studied towns was linked to low levels of population protection from the initial shots of the COVID-19 vaccine against Omicron infection and limited uptake of booster shots in these communities. Despite difficulties with applying WBE in rural regions, this study shows that beyond evaluating spikes of viral infections, WBE can be used to evaluate the effect of a population’s vaccine coverage on SARS-CoV-2 variant dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信