具有电报式、随机变指数的多分数布朗运动

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Michał Balcerek, Samudrajit Thapa, Krzysztof Burnecki, Holger Kantz, Ralf Metzler, Agnieszka Wyłomańska, Aleksei Chechkin
{"title":"具有电报式、随机变指数的多分数布朗运动","authors":"Michał Balcerek, Samudrajit Thapa, Krzysztof Burnecki, Holger Kantz, Ralf Metzler, Agnieszka Wyłomańska, Aleksei Chechkin","doi":"10.1103/physrevlett.134.197101","DOIUrl":null,"url":null,"abstract":"The diversity of diffusive systems exhibiting long-range correlations characterized by a stochastically varying Hurst exponent calls for a generic multifractional model. We present a simple, analytically tractable model which fills the gap between mathematical formulations of multifractional Brownian motion and empirical studies. In our model, called telegraphic multifractional Brownian motion, the Hurst exponent is modeled by a smoothed telegraph process which results in a stationary beta distribution of exponents as observed in biological experiments. We also provide a methodology to identify our model in experimental data and present concrete examples from biology, climate, and finance to demonstrate the efficacy of our approach. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"147 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractional Brownian Motion with Telegraphic, Stochastically Varying Exponent\",\"authors\":\"Michał Balcerek, Samudrajit Thapa, Krzysztof Burnecki, Holger Kantz, Ralf Metzler, Agnieszka Wyłomańska, Aleksei Chechkin\",\"doi\":\"10.1103/physrevlett.134.197101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diversity of diffusive systems exhibiting long-range correlations characterized by a stochastically varying Hurst exponent calls for a generic multifractional model. We present a simple, analytically tractable model which fills the gap between mathematical formulations of multifractional Brownian motion and empirical studies. In our model, called telegraphic multifractional Brownian motion, the Hurst exponent is modeled by a smoothed telegraph process which results in a stationary beta distribution of exponents as observed in biological experiments. We also provide a methodology to identify our model in experimental data and present concrete examples from biology, climate, and finance to demonstrate the efficacy of our approach. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.197101\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.197101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以随机变化的赫斯特指数为特征的具有长程相关性的扩散系统的多样性需要一般的多分数模型。我们提出了一个简单的、易于分析的模型,它填补了多分数布朗运动的数学公式与实证研究之间的空白。在我们的模型中,称为电报多分数布朗运动,赫斯特指数是由平滑的电报过程建模的,这导致指数的平稳分布,正如在生物实验中观察到的那样。我们还提供了一种方法来在实验数据中识别我们的模型,并从生物学、气候和金融中提供了具体的例子来证明我们方法的有效性。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractional Brownian Motion with Telegraphic, Stochastically Varying Exponent
The diversity of diffusive systems exhibiting long-range correlations characterized by a stochastically varying Hurst exponent calls for a generic multifractional model. We present a simple, analytically tractable model which fills the gap between mathematical formulations of multifractional Brownian motion and empirical studies. In our model, called telegraphic multifractional Brownian motion, the Hurst exponent is modeled by a smoothed telegraph process which results in a stationary beta distribution of exponents as observed in biological experiments. We also provide a methodology to identify our model in experimental data and present concrete examples from biology, climate, and finance to demonstrate the efficacy of our approach. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信