Nathan Hawkins, Gilbert W. Fellingham, Garritt L. Page
{"title":"逐场排球获胜概率模型","authors":"Nathan Hawkins, Gilbert W. Fellingham, Garritt L. Page","doi":"10.1080/00031305.2025.2490786","DOIUrl":null,"url":null,"abstract":"This paper introduces a volleyball point-by-point win probability model that updates the probability of winning a set after each play in the set. The covariate informed product partition model (PPMx) is well suited to flexibly include in-set team performance information when making predictions. However, making predictions in real time would be too expensive computationally as it would require refitting the PPMx for each prediction. Instead, we develop a predictive procedure based on a single training of the PPMx that predicts in real-time. We deploy this procedure using data from the 2018 Men’s World Volleyball Championship. The procedure first trains a PPMx model using end-of-set team performance statistics from the round robin stage of the tournament. Then based on the PPMx predictive distribution, we predict the win probability after every play of every match in the knockout stages. Finally, we show how the prediction procedure can be enhanced by including pre-set information towards the beginning of the set and set score towards the end.","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Play-by-Play Volleyball Win Probability Model\",\"authors\":\"Nathan Hawkins, Gilbert W. Fellingham, Garritt L. Page\",\"doi\":\"10.1080/00031305.2025.2490786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a volleyball point-by-point win probability model that updates the probability of winning a set after each play in the set. The covariate informed product partition model (PPMx) is well suited to flexibly include in-set team performance information when making predictions. However, making predictions in real time would be too expensive computationally as it would require refitting the PPMx for each prediction. Instead, we develop a predictive procedure based on a single training of the PPMx that predicts in real-time. We deploy this procedure using data from the 2018 Men’s World Volleyball Championship. The procedure first trains a PPMx model using end-of-set team performance statistics from the round robin stage of the tournament. Then based on the PPMx predictive distribution, we predict the win probability after every play of every match in the knockout stages. Finally, we show how the prediction procedure can be enhanced by including pre-set information towards the beginning of the set and set score towards the end.\",\"PeriodicalId\":50801,\"journal\":{\"name\":\"American Statistician\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Statistician\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2025.2490786\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2025.2490786","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
This paper introduces a volleyball point-by-point win probability model that updates the probability of winning a set after each play in the set. The covariate informed product partition model (PPMx) is well suited to flexibly include in-set team performance information when making predictions. However, making predictions in real time would be too expensive computationally as it would require refitting the PPMx for each prediction. Instead, we develop a predictive procedure based on a single training of the PPMx that predicts in real-time. We deploy this procedure using data from the 2018 Men’s World Volleyball Championship. The procedure first trains a PPMx model using end-of-set team performance statistics from the round robin stage of the tournament. Then based on the PPMx predictive distribution, we predict the win probability after every play of every match in the knockout stages. Finally, we show how the prediction procedure can be enhanced by including pre-set information towards the beginning of the set and set score towards the end.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.