Thao Kim Truong, Grace Whang, Jake Huang, Stephanie Elizabeth Sandoval and Wolfgang G. Zeier
{"title":"探测固态电池老化:通过时间分辨电化学阻抗谱评估日历与循环老化方案","authors":"Thao Kim Truong, Grace Whang, Jake Huang, Stephanie Elizabeth Sandoval and Wolfgang G. Zeier","doi":"10.1039/D5TA01083G","DOIUrl":null,"url":null,"abstract":"<p >Understanding battery aging mechanisms is critical towards identifying and improving upon performance bottlenecks. Aging protocols which can quickly identify and monitor degradation of cells can help expedite solid-state battery development by predicting the possible long-term aging trend of cells in a time efficient manner. In this work, the degradation behavior of In/InLi|Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl|NCM83:Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl cells was investigated using two different accelerated aging protocols: (1) calendar aging and (2) cycle aging. Cells with various cut-off potentials were investigated using the two aging protocols showing significantly greater performance deterioration under calendar aging relative to cycle aging. Applying distribution of relaxation times analyses obtained from impedance spectroscopy, the cathode–electrolyte interfacial resistance evolution is found to be the dominant degradation mechanism during calendar aging while changes at the anode–electrolyte interface are influential during cycle aging tests. The aging protocol and analyses applied in this work can potentially be further extended to other systems to help understand degradation processes and quickly screen cells for optimization.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 23","pages":" 17261-17270"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01083g?page=search","citationCount":"0","resultStr":"{\"title\":\"Probing solid-state battery aging: evaluating calendar vs. cycle aging protocols via time-resolved electrochemical impedance spectroscopy†\",\"authors\":\"Thao Kim Truong, Grace Whang, Jake Huang, Stephanie Elizabeth Sandoval and Wolfgang G. Zeier\",\"doi\":\"10.1039/D5TA01083G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding battery aging mechanisms is critical towards identifying and improving upon performance bottlenecks. Aging protocols which can quickly identify and monitor degradation of cells can help expedite solid-state battery development by predicting the possible long-term aging trend of cells in a time efficient manner. In this work, the degradation behavior of In/InLi|Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl|NCM83:Li<small><sub>6</sub></small>PS<small><sub>5</sub></small>Cl cells was investigated using two different accelerated aging protocols: (1) calendar aging and (2) cycle aging. Cells with various cut-off potentials were investigated using the two aging protocols showing significantly greater performance deterioration under calendar aging relative to cycle aging. Applying distribution of relaxation times analyses obtained from impedance spectroscopy, the cathode–electrolyte interfacial resistance evolution is found to be the dominant degradation mechanism during calendar aging while changes at the anode–electrolyte interface are influential during cycle aging tests. The aging protocol and analyses applied in this work can potentially be further extended to other systems to help understand degradation processes and quickly screen cells for optimization.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 23\",\"pages\":\" 17261-17270\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01083g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01083g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01083g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Probing solid-state battery aging: evaluating calendar vs. cycle aging protocols via time-resolved electrochemical impedance spectroscopy†
Understanding battery aging mechanisms is critical towards identifying and improving upon performance bottlenecks. Aging protocols which can quickly identify and monitor degradation of cells can help expedite solid-state battery development by predicting the possible long-term aging trend of cells in a time efficient manner. In this work, the degradation behavior of In/InLi|Li6PS5Cl|NCM83:Li6PS5Cl cells was investigated using two different accelerated aging protocols: (1) calendar aging and (2) cycle aging. Cells with various cut-off potentials were investigated using the two aging protocols showing significantly greater performance deterioration under calendar aging relative to cycle aging. Applying distribution of relaxation times analyses obtained from impedance spectroscopy, the cathode–electrolyte interfacial resistance evolution is found to be the dominant degradation mechanism during calendar aging while changes at the anode–electrolyte interface are influential during cycle aging tests. The aging protocol and analyses applied in this work can potentially be further extended to other systems to help understand degradation processes and quickly screen cells for optimization.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.