有节奏的径向氧损失提高了土壤磷的生物有效性

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cai Li, Hu Sheng, Mengxi Tan, Hengyi Dai, Xiaolong Wang, Huacheng Xu, Shiming Ding, Guoqiang Zhao
{"title":"有节奏的径向氧损失提高了土壤磷的生物有效性","authors":"Cai Li, Hu Sheng, Mengxi Tan, Hengyi Dai, Xiaolong Wang, Huacheng Xu, Shiming Ding, Guoqiang Zhao","doi":"10.1038/s41467-025-59637-x","DOIUrl":null,"url":null,"abstract":"<p>Phosphorus (P) availability is vital for global primary productivity, yet it is often immobilized in soils by redox-inert crystalline iron (oxy)hydroxides. Here we show that diel radial oxygen loss (ROL) from plant roots induces redox fluctuations in the rhizosphere, activating these iron minerals and enhancing P mobilization. Nighttime reduction and daytime oxidation drive the formation of reactive metastable iron phases (RMPs) on root surfaces, forming a redox-active iron plaque. These RMPs undergo rapid dissolution–reformation cycles, facilitating P transfer from soil to porewater for plant uptake. Using multiple aquatic plants from agriculturally developed regions, we demonstrate that ROL broadly enhances soil P availability. In rice paddies, ROL-activated P release accounts for 8.7% of global P fertilizer input, contributing an estimated economic value of USD 0.52 billion annually. Our findings uncover a previously overlooked redox mechanism by which plants enhance P acquisition, with broad implications for nutrient cycling and agricultural sustainability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"112 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhythmic radial oxygen loss enhances soil phosphorus bioavailability\",\"authors\":\"Cai Li, Hu Sheng, Mengxi Tan, Hengyi Dai, Xiaolong Wang, Huacheng Xu, Shiming Ding, Guoqiang Zhao\",\"doi\":\"10.1038/s41467-025-59637-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosphorus (P) availability is vital for global primary productivity, yet it is often immobilized in soils by redox-inert crystalline iron (oxy)hydroxides. Here we show that diel radial oxygen loss (ROL) from plant roots induces redox fluctuations in the rhizosphere, activating these iron minerals and enhancing P mobilization. Nighttime reduction and daytime oxidation drive the formation of reactive metastable iron phases (RMPs) on root surfaces, forming a redox-active iron plaque. These RMPs undergo rapid dissolution–reformation cycles, facilitating P transfer from soil to porewater for plant uptake. Using multiple aquatic plants from agriculturally developed regions, we demonstrate that ROL broadly enhances soil P availability. In rice paddies, ROL-activated P release accounts for 8.7% of global P fertilizer input, contributing an estimated economic value of USD 0.52 billion annually. Our findings uncover a previously overlooked redox mechanism by which plants enhance P acquisition, with broad implications for nutrient cycling and agricultural sustainability.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59637-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59637-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

磷(P)的有效性对全球初级生产力至关重要,但它经常被氧化还原惰性结晶铁(氧)氢氧化物固定在土壤中。本研究表明,植物根系的径向氧损失(ROL)诱导根际氧化还原波动,激活这些铁矿物并增强磷的动员。夜间还原和白天氧化驱动根表面反应亚稳铁相(RMPs)的形成,形成氧化还原活性铁斑块。这些RMPs经历快速的溶解-改造循环,促进磷从土壤转移到孔隙水供植物吸收。利用来自农业发达地区的多种水生植物,我们证明ROL广泛地提高了土壤P的有效性。在稻田中,roll激活的磷肥释放占全球磷肥投入的8.7%,每年贡献的经济价值估计为5.2亿美元。我们的发现揭示了一个以前被忽视的氧化还原机制,植物通过该机制增强磷的获取,对养分循环和农业可持续性具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rhythmic radial oxygen loss enhances soil phosphorus bioavailability

Rhythmic radial oxygen loss enhances soil phosphorus bioavailability

Phosphorus (P) availability is vital for global primary productivity, yet it is often immobilized in soils by redox-inert crystalline iron (oxy)hydroxides. Here we show that diel radial oxygen loss (ROL) from plant roots induces redox fluctuations in the rhizosphere, activating these iron minerals and enhancing P mobilization. Nighttime reduction and daytime oxidation drive the formation of reactive metastable iron phases (RMPs) on root surfaces, forming a redox-active iron plaque. These RMPs undergo rapid dissolution–reformation cycles, facilitating P transfer from soil to porewater for plant uptake. Using multiple aquatic plants from agriculturally developed regions, we demonstrate that ROL broadly enhances soil P availability. In rice paddies, ROL-activated P release accounts for 8.7% of global P fertilizer input, contributing an estimated economic value of USD 0.52 billion annually. Our findings uncover a previously overlooked redox mechanism by which plants enhance P acquisition, with broad implications for nutrient cycling and agricultural sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信