Julian Barnett, Konstantin G. Wirth, Richard Hentrich, Yasin C. Durmaz, Marc-André Rose, Felix Gunkel, Thomas Taubner
{"title":"氧化物异质结构及其他二维电子系统的低温近场指纹图谱","authors":"Julian Barnett, Konstantin G. Wirth, Richard Hentrich, Yasin C. Durmaz, Marc-André Rose, Felix Gunkel, Thomas Taubner","doi":"10.1038/s41467-025-59633-1","DOIUrl":null,"url":null,"abstract":"<p>Confined electron systems, such as 2D electron gases (2DEGs), 2D materials, or topological insulators, show great technological promise but their susceptibility to defects often results in nanoscale inhomogeneities with unclear origins. Scattering-type scanning near-field optical microscopy (s-SNOM) is useful to investigate buried confined electron systems non-destructively with nanoscale resolution, however, a clear separation of carrier concentration and mobility was so far impossible in s-SNOM. Here, we predict a previously inaccessible characteristic “fingerprint” response of the prototypical LaAlO<sub>3</sub>/SrTiO<sub>3</sub> 2DEG, and verify it using a state-of-the-art tunable narrow-band laser in mid-infrared cryo-s-SNOM at 8 K. Our modeling allows us to separate the influence of carrier concentration and mobility on fingerprint spectra and to characterize 2DEG inhomogeneities on the nanoscale. Finally, we model the surface accumulation layer in doped InAs, to show that our fingerprint spectra are a universal feature and generally applicable to confined electron systems, like topological insulators or stacked van-der-Waals materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low temperature near-field fingerprint spectroscopy of 2D electron systems in oxide heterostructures and beyond\",\"authors\":\"Julian Barnett, Konstantin G. Wirth, Richard Hentrich, Yasin C. Durmaz, Marc-André Rose, Felix Gunkel, Thomas Taubner\",\"doi\":\"10.1038/s41467-025-59633-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Confined electron systems, such as 2D electron gases (2DEGs), 2D materials, or topological insulators, show great technological promise but their susceptibility to defects often results in nanoscale inhomogeneities with unclear origins. Scattering-type scanning near-field optical microscopy (s-SNOM) is useful to investigate buried confined electron systems non-destructively with nanoscale resolution, however, a clear separation of carrier concentration and mobility was so far impossible in s-SNOM. Here, we predict a previously inaccessible characteristic “fingerprint” response of the prototypical LaAlO<sub>3</sub>/SrTiO<sub>3</sub> 2DEG, and verify it using a state-of-the-art tunable narrow-band laser in mid-infrared cryo-s-SNOM at 8 K. Our modeling allows us to separate the influence of carrier concentration and mobility on fingerprint spectra and to characterize 2DEG inhomogeneities on the nanoscale. Finally, we model the surface accumulation layer in doped InAs, to show that our fingerprint spectra are a universal feature and generally applicable to confined electron systems, like topological insulators or stacked van-der-Waals materials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59633-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59633-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Low temperature near-field fingerprint spectroscopy of 2D electron systems in oxide heterostructures and beyond
Confined electron systems, such as 2D electron gases (2DEGs), 2D materials, or topological insulators, show great technological promise but their susceptibility to defects often results in nanoscale inhomogeneities with unclear origins. Scattering-type scanning near-field optical microscopy (s-SNOM) is useful to investigate buried confined electron systems non-destructively with nanoscale resolution, however, a clear separation of carrier concentration and mobility was so far impossible in s-SNOM. Here, we predict a previously inaccessible characteristic “fingerprint” response of the prototypical LaAlO3/SrTiO3 2DEG, and verify it using a state-of-the-art tunable narrow-band laser in mid-infrared cryo-s-SNOM at 8 K. Our modeling allows us to separate the influence of carrier concentration and mobility on fingerprint spectra and to characterize 2DEG inhomogeneities on the nanoscale. Finally, we model the surface accumulation layer in doped InAs, to show that our fingerprint spectra are a universal feature and generally applicable to confined electron systems, like topological insulators or stacked van-der-Waals materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.