氧化物异质结构及其他二维电子系统的低温近场指纹图谱

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Julian Barnett, Konstantin G. Wirth, Richard Hentrich, Yasin C. Durmaz, Marc-André Rose, Felix Gunkel, Thomas Taubner
{"title":"氧化物异质结构及其他二维电子系统的低温近场指纹图谱","authors":"Julian Barnett, Konstantin G. Wirth, Richard Hentrich, Yasin C. Durmaz, Marc-André Rose, Felix Gunkel, Thomas Taubner","doi":"10.1038/s41467-025-59633-1","DOIUrl":null,"url":null,"abstract":"<p>Confined electron systems, such as 2D electron gases (2DEGs), 2D materials, or topological insulators, show great technological promise but their susceptibility to defects often results in nanoscale inhomogeneities with unclear origins. Scattering-type scanning near-field optical microscopy (s-SNOM) is useful to investigate buried confined electron systems non-destructively with nanoscale resolution, however, a clear separation of carrier concentration and mobility was so far impossible in s-SNOM. Here, we predict a previously inaccessible characteristic “fingerprint” response of the prototypical LaAlO<sub>3</sub>/SrTiO<sub>3</sub> 2DEG, and verify it using a state-of-the-art tunable narrow-band laser in mid-infrared cryo-s-SNOM at 8 K. Our modeling allows us to separate the influence of carrier concentration and mobility on fingerprint spectra and to characterize 2DEG inhomogeneities on the nanoscale. Finally, we model the surface accumulation layer in doped InAs, to show that our fingerprint spectra are a universal feature and generally applicable to confined electron systems, like topological insulators or stacked van-der-Waals materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low temperature near-field fingerprint spectroscopy of 2D electron systems in oxide heterostructures and beyond\",\"authors\":\"Julian Barnett, Konstantin G. Wirth, Richard Hentrich, Yasin C. Durmaz, Marc-André Rose, Felix Gunkel, Thomas Taubner\",\"doi\":\"10.1038/s41467-025-59633-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Confined electron systems, such as 2D electron gases (2DEGs), 2D materials, or topological insulators, show great technological promise but their susceptibility to defects often results in nanoscale inhomogeneities with unclear origins. Scattering-type scanning near-field optical microscopy (s-SNOM) is useful to investigate buried confined electron systems non-destructively with nanoscale resolution, however, a clear separation of carrier concentration and mobility was so far impossible in s-SNOM. Here, we predict a previously inaccessible characteristic “fingerprint” response of the prototypical LaAlO<sub>3</sub>/SrTiO<sub>3</sub> 2DEG, and verify it using a state-of-the-art tunable narrow-band laser in mid-infrared cryo-s-SNOM at 8 K. Our modeling allows us to separate the influence of carrier concentration and mobility on fingerprint spectra and to characterize 2DEG inhomogeneities on the nanoscale. Finally, we model the surface accumulation layer in doped InAs, to show that our fingerprint spectra are a universal feature and generally applicable to confined electron systems, like topological insulators or stacked van-der-Waals materials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59633-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59633-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

受限电子系统,如二维电子气体(2DEGs)、二维材料或拓扑绝缘体,显示出巨大的技术前景,但它们对缺陷的易感性往往导致纳米尺度的不均匀性和不明确的来源。散射型扫描近场光学显微镜(s-SNOM)在纳米级分辨率下无损地研究埋藏的受限电子系统是有用的,然而,在s-SNOM中,载流子浓度和迁移率的明确分离迄今为止是不可能的。在这里,我们预测了LaAlO3/SrTiO3 2DEG原型的一个以前无法获得的特征“指纹”响应,并使用最先进的可调谐窄带激光在8 K的中红外cryo-s-SNOM中验证了它。我们的建模使我们能够分离载流子浓度和迁移率对指纹光谱的影响,并在纳米尺度上表征2DEG的不均匀性。最后,我们对掺杂InAs的表面积累层进行了建模,以表明我们的指纹光谱是一个普遍的特征,并且通常适用于受限电子系统,如拓扑绝缘体或堆叠范德华材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low temperature near-field fingerprint spectroscopy of 2D electron systems in oxide heterostructures and beyond

Low temperature near-field fingerprint spectroscopy of 2D electron systems in oxide heterostructures and beyond

Confined electron systems, such as 2D electron gases (2DEGs), 2D materials, or topological insulators, show great technological promise but their susceptibility to defects often results in nanoscale inhomogeneities with unclear origins. Scattering-type scanning near-field optical microscopy (s-SNOM) is useful to investigate buried confined electron systems non-destructively with nanoscale resolution, however, a clear separation of carrier concentration and mobility was so far impossible in s-SNOM. Here, we predict a previously inaccessible characteristic “fingerprint” response of the prototypical LaAlO3/SrTiO3 2DEG, and verify it using a state-of-the-art tunable narrow-band laser in mid-infrared cryo-s-SNOM at 8 K. Our modeling allows us to separate the influence of carrier concentration and mobility on fingerprint spectra and to characterize 2DEG inhomogeneities on the nanoscale. Finally, we model the surface accumulation layer in doped InAs, to show that our fingerprint spectra are a universal feature and generally applicable to confined electron systems, like topological insulators or stacked van-der-Waals materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信