完全旋转高斯消去中生长因子的一个新的上界

IF 0.8 3区 数学 Q2 MATHEMATICS
Ankit Bisain, Alan Edelman, John Urschel
{"title":"完全旋转高斯消去中生长因子的一个新的上界","authors":"Ankit Bisain,&nbsp;Alan Edelman,&nbsp;John Urschel","doi":"10.1112/blms.70034","DOIUrl":null,"url":null,"abstract":"<p>The growth factor in Gaussian elimination measures how large the entries of an LU factorization can be relative to the entries of the original matrix. It is a key parameter in error estimates, and one of the most fundamental topics in numerical analysis. We produce an upper bound of <span></span><math>\n <semantics>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>0.2079</mn>\n <mi>ln</mi>\n <mi>n</mi>\n <mo>+</mo>\n <mn>0.91</mn>\n </mrow>\n </msup>\n <annotation>$n^{0.2079 \\ln n +0.91}$</annotation>\n </semantics></math> for the growth factor in Gaussian elimination with complete pivoting — the first improvement upon Wilkinson's original 1961 bound of <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n <msup>\n <mi>n</mi>\n <mrow>\n <mn>0.25</mn>\n <mi>ln</mi>\n <mi>n</mi>\n <mo>+</mo>\n <mn>0.5</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$2 \\, n ^{0.25\\ln n +0.5}$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1369-1387"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70034","citationCount":"0","resultStr":"{\"title\":\"A new upper bound for the growth factor in Gaussian elimination with complete pivoting\",\"authors\":\"Ankit Bisain,&nbsp;Alan Edelman,&nbsp;John Urschel\",\"doi\":\"10.1112/blms.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growth factor in Gaussian elimination measures how large the entries of an LU factorization can be relative to the entries of the original matrix. It is a key parameter in error estimates, and one of the most fundamental topics in numerical analysis. We produce an upper bound of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>0.2079</mn>\\n <mi>ln</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>0.91</mn>\\n </mrow>\\n </msup>\\n <annotation>$n^{0.2079 \\\\ln n +0.91}$</annotation>\\n </semantics></math> for the growth factor in Gaussian elimination with complete pivoting — the first improvement upon Wilkinson's original 1961 bound of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mspace></mspace>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mn>0.25</mn>\\n <mi>ln</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>0.5</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$2 \\\\, n ^{0.25\\\\ln n +0.5}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1369-1387\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70034\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70034","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

高斯消去法中的生长因子测量了一个LU分解的元素相对于原始矩阵的元素有多大。它是误差估计中的一个关键参数,也是数值分析中最基本的课题之一。我们给出了完全轴向-高斯消去中生长因子的上界n 0.2079 ln n +0.91 $n^{0.2079 \ln n +0.91}$这是对威尔金森1961年提出的2 n 0.25 ln n +0.5 $2 \, n ^{0.25\ln n +0.5}$的第一个改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A new upper bound for the growth factor in Gaussian elimination with complete pivoting

A new upper bound for the growth factor in Gaussian elimination with complete pivoting

The growth factor in Gaussian elimination measures how large the entries of an LU factorization can be relative to the entries of the original matrix. It is a key parameter in error estimates, and one of the most fundamental topics in numerical analysis. We produce an upper bound of n 0.2079 ln n + 0.91 $n^{0.2079 \ln n +0.91}$ for the growth factor in Gaussian elimination with complete pivoting — the first improvement upon Wilkinson's original 1961 bound of 2 n 0.25 ln n + 0.5 $2 \, n ^{0.25\ln n +0.5}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信