{"title":"有限性质和相对双曲群","authors":"Harsh Patil","doi":"10.1112/blms.70039","DOIUrl":null,"url":null,"abstract":"<p>We show that properties <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$FP_n$</annotation>\n </semantics></math> hold for a relatively hyperbolic group if and only if they hold for all the peripheral subgroups. As an application we show that there are at least countably many distinct quasi-isometry classes of one-ended non-amenable groups that are type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> but not <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$F_{n+1}$</annotation>\n </semantics></math> and similarly of type <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$FP_n$</annotation>\n </semantics></math> and not <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$FP_{n+1}$</annotation>\n </semantics></math> for all positive integers <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1445-1452"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70039","citationCount":"0","resultStr":"{\"title\":\"Finiteness properties and relatively hyperbolic groups\",\"authors\":\"Harsh Patil\",\"doi\":\"10.1112/blms.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that properties <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$F_n$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <msub>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$FP_n$</annotation>\\n </semantics></math> hold for a relatively hyperbolic group if and only if they hold for all the peripheral subgroups. As an application we show that there are at least countably many distinct quasi-isometry classes of one-ended non-amenable groups that are type <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$F_n$</annotation>\\n </semantics></math> but not <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$F_{n+1}$</annotation>\\n </semantics></math> and similarly of type <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <msub>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$FP_n$</annotation>\\n </semantics></math> and not <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <msub>\\n <mi>P</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$FP_{n+1}$</annotation>\\n </semantics></math> for all positive integers <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1445-1452\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70039\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finiteness properties and relatively hyperbolic groups
We show that properties and hold for a relatively hyperbolic group if and only if they hold for all the peripheral subgroups. As an application we show that there are at least countably many distinct quasi-isometry classes of one-ended non-amenable groups that are type but not and similarly of type and not for all positive integers .