关于第二Brauer-Thrall猜想的τ $\tau$倾斜版本的注释

IF 0.9 3区 数学 Q2 MATHEMATICS
Calvin Pfeifer
{"title":"关于第二Brauer-Thrall猜想的τ $\\tau$倾斜版本的注释","authors":"Calvin Pfeifer","doi":"10.1112/blms.70048","DOIUrl":null,"url":null,"abstract":"<p>In this short note, we state a stable and a <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-reduced version of the second Brauer–Thrall conjecture. The former is a slight strengthening of a brick version of the second Brauer–Thrall conjecture raised by Mousavand and Schroll–Treffinger–Valdivieso. The latter is stated in terms of Geiß–Leclerc–Schröer's generically <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-reduced components and provides a geometric interpretation of a question of Demonet. It follows that the stable second Brauer–Thrall conjecture implies our <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-reduced second Brauer–Thrall conjecture. Finally, we prove the reversed implication for the class of <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-tame algebras recently introduced by Asai–Iyama.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1568-1583"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70048","citationCount":"0","resultStr":"{\"title\":\"Remarks on \\n \\n τ\\n $\\\\tau$\\n -tilted versions of the second Brauer–Thrall conjecture\",\"authors\":\"Calvin Pfeifer\",\"doi\":\"10.1112/blms.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this short note, we state a stable and a <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-reduced version of the second Brauer–Thrall conjecture. The former is a slight strengthening of a brick version of the second Brauer–Thrall conjecture raised by Mousavand and Schroll–Treffinger–Valdivieso. The latter is stated in terms of Geiß–Leclerc–Schröer's generically <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-reduced components and provides a geometric interpretation of a question of Demonet. It follows that the stable second Brauer–Thrall conjecture implies our <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-reduced second Brauer–Thrall conjecture. Finally, we prove the reversed implication for the class of <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$E$</annotation>\\n </semantics></math>-tame algebras recently introduced by Asai–Iyama.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1568-1583\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70048\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇简短的笔记中,我们陈述了第二Brauer-Thrall猜想的稳定和τ $\tau$ -简化版本。前者是对Mousavand和schrol - treffinger - valdivieso提出的第二个Brauer-Thrall猜想的轻微强化。后者是根据Geiß-Leclerc-Schröer的一般τ $\tau$ -简化分量来陈述的,并提供了Demonet问题的几何解释。由此可见,稳定的第二Brauer-Thrall猜想隐含了我们的τ $\tau$约简的第二Brauer-Thrall猜想。最后,我们证明了最近由Asai-Iyama引入的E$ E$ -tame代数类的反向含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Remarks on 
         
            τ
            $\tau$
         -tilted versions of the second Brauer–Thrall conjecture

Remarks on τ $\tau$ -tilted versions of the second Brauer–Thrall conjecture

In this short note, we state a stable and a τ $\tau$ -reduced version of the second Brauer–Thrall conjecture. The former is a slight strengthening of a brick version of the second Brauer–Thrall conjecture raised by Mousavand and Schroll–Treffinger–Valdivieso. The latter is stated in terms of Geiß–Leclerc–Schröer's generically τ $\tau$ -reduced components and provides a geometric interpretation of a question of Demonet. It follows that the stable second Brauer–Thrall conjecture implies our τ $\tau$ -reduced second Brauer–Thrall conjecture. Finally, we prove the reversed implication for the class of E $E$ -tame algebras recently introduced by Asai–Iyama.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信