A. A. Nascimento, V. S. Miya-Coreixas, D. S. M. Araújo, T. H. O. Nascimento, G. F. Santos, R. Brito, K. C. Calaza
{"title":"鸡视网膜缺血模型中gaba能系统的调节:氯共转运体的作用","authors":"A. A. Nascimento, V. S. Miya-Coreixas, D. S. M. Araújo, T. H. O. Nascimento, G. F. Santos, R. Brito, K. C. Calaza","doi":"10.1002/jnr.70043","DOIUrl":null,"url":null,"abstract":"<p>Retinal ischemia is a significant pathological condition that contributes to visual impairment and neuronal cell death in various retinopathies. Evidence suggests that GABA release during ischemic events may exhibit neuroprotective properties, but conflicting findings highlight a potential shift in its effects due to altered chloride ion homeostasis. This study aimed to investigate the role of the GABAergic system in retinal ischemia, focusing on the temporal dynamics of GABA release and its impact on retinal damage. We hypothesized that ischemia-induced changes in GABA transport and chloride ion equilibrium contribute to neuronal damage, which can be mitigated by modulating GABAergic activity. Using an ex vivo chick retina model subjected to oxygen and glucose deprivation (OGD), during different times, we assessed morphological changes, cell death, GABA levels, transporter activity, and the levels of chloride cotransporters NKCC1 and KCC2. Pharmacological interventions, including picrotoxin and bumetanide, were used to evaluate neuroprotective effects. Our results revealed that OGD-induced significant morphological changes and cell death in the retina. GABA levels were reduced in a GAT-1-dependent manner, while picrotoxin and bumetanide demonstrated neuroprotective effects by mitigating retinal swelling and modulating the GABAergic system. Notably, OGD increased NKCC1 content, but not KCC2 levels, indicating a disruption in chloride homeostasis. These findings suggest that ischemia-induced alterations in GABAergic activity and chloride transport contribute to retinal damage. Targeting these pathways with pharmacological agents, such as bumetanide, may offer therapeutic strategies for mitigating ischemic retinal injury. Further research is recommended to explore the clinical applicability of these findings in the ischemic retina.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70043","citationCount":"0","resultStr":"{\"title\":\"Modulation of GABAergic System in a Chicken Retinal Ischemic Model: The Role of Chloride Cotransporters\",\"authors\":\"A. A. Nascimento, V. S. Miya-Coreixas, D. S. M. Araújo, T. H. O. Nascimento, G. F. Santos, R. Brito, K. C. Calaza\",\"doi\":\"10.1002/jnr.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Retinal ischemia is a significant pathological condition that contributes to visual impairment and neuronal cell death in various retinopathies. Evidence suggests that GABA release during ischemic events may exhibit neuroprotective properties, but conflicting findings highlight a potential shift in its effects due to altered chloride ion homeostasis. This study aimed to investigate the role of the GABAergic system in retinal ischemia, focusing on the temporal dynamics of GABA release and its impact on retinal damage. We hypothesized that ischemia-induced changes in GABA transport and chloride ion equilibrium contribute to neuronal damage, which can be mitigated by modulating GABAergic activity. Using an ex vivo chick retina model subjected to oxygen and glucose deprivation (OGD), during different times, we assessed morphological changes, cell death, GABA levels, transporter activity, and the levels of chloride cotransporters NKCC1 and KCC2. Pharmacological interventions, including picrotoxin and bumetanide, were used to evaluate neuroprotective effects. Our results revealed that OGD-induced significant morphological changes and cell death in the retina. GABA levels were reduced in a GAT-1-dependent manner, while picrotoxin and bumetanide demonstrated neuroprotective effects by mitigating retinal swelling and modulating the GABAergic system. Notably, OGD increased NKCC1 content, but not KCC2 levels, indicating a disruption in chloride homeostasis. These findings suggest that ischemia-induced alterations in GABAergic activity and chloride transport contribute to retinal damage. Targeting these pathways with pharmacological agents, such as bumetanide, may offer therapeutic strategies for mitigating ischemic retinal injury. Further research is recommended to explore the clinical applicability of these findings in the ischemic retina.</p>\",\"PeriodicalId\":16490,\"journal\":{\"name\":\"Journal of Neuroscience Research\",\"volume\":\"103 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.70043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70043\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Modulation of GABAergic System in a Chicken Retinal Ischemic Model: The Role of Chloride Cotransporters
Retinal ischemia is a significant pathological condition that contributes to visual impairment and neuronal cell death in various retinopathies. Evidence suggests that GABA release during ischemic events may exhibit neuroprotective properties, but conflicting findings highlight a potential shift in its effects due to altered chloride ion homeostasis. This study aimed to investigate the role of the GABAergic system in retinal ischemia, focusing on the temporal dynamics of GABA release and its impact on retinal damage. We hypothesized that ischemia-induced changes in GABA transport and chloride ion equilibrium contribute to neuronal damage, which can be mitigated by modulating GABAergic activity. Using an ex vivo chick retina model subjected to oxygen and glucose deprivation (OGD), during different times, we assessed morphological changes, cell death, GABA levels, transporter activity, and the levels of chloride cotransporters NKCC1 and KCC2. Pharmacological interventions, including picrotoxin and bumetanide, were used to evaluate neuroprotective effects. Our results revealed that OGD-induced significant morphological changes and cell death in the retina. GABA levels were reduced in a GAT-1-dependent manner, while picrotoxin and bumetanide demonstrated neuroprotective effects by mitigating retinal swelling and modulating the GABAergic system. Notably, OGD increased NKCC1 content, but not KCC2 levels, indicating a disruption in chloride homeostasis. These findings suggest that ischemia-induced alterations in GABAergic activity and chloride transport contribute to retinal damage. Targeting these pathways with pharmacological agents, such as bumetanide, may offer therapeutic strategies for mitigating ischemic retinal injury. Further research is recommended to explore the clinical applicability of these findings in the ischemic retina.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.