Zourong Long, Gen Tan, You Wu, Hong Yang, Chao Ding
{"title":"GRSNet:一种用于三维点云分类和分割的超轻量级神经网络","authors":"Zourong Long, Gen Tan, You Wu, Hong Yang, Chao Ding","doi":"10.1049/cdt2/7934018","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The processing of point cloud data has become a significant area of research in the modern field of perception. Classification and segmentation are critical tasks in autonomous driving, environmental perception, and digital twins. Algorithms that directly extract features from raw point cloud data have simple architectures, but they are constrained by computational demands and limited efficiency. This makes effective deployment on resource-limited devices challenging. This article introduces GRSNet, an ultra-lightweight algorithm. The principal innovation is a new sampling method named golden ratio sampling (GRS), which generates sampling point indices directly using the golden ratio to subsequently locate the corresponding sampling points. This method efficiently extracts representative points from point cloud data and integrates them into deep networks. Leveraging GRS, this study combines the concepts from GhostNet and self-attention mechanisms to develop a feature extraction module dubbed the SA_Ghost Block, forming the core of GRSNet. Comparative experiments with leading algorithms on established point cloud open-source datasets demonstrate that GRSNet achieves superior performance, maintaining only 0.7 M parameters.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"2025 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2/7934018","citationCount":"0","resultStr":"{\"title\":\"GRSNet: An Ultra-Lightweight Neural Network for 3D Point Cloud Classification and Segmentation\",\"authors\":\"Zourong Long, Gen Tan, You Wu, Hong Yang, Chao Ding\",\"doi\":\"10.1049/cdt2/7934018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The processing of point cloud data has become a significant area of research in the modern field of perception. Classification and segmentation are critical tasks in autonomous driving, environmental perception, and digital twins. Algorithms that directly extract features from raw point cloud data have simple architectures, but they are constrained by computational demands and limited efficiency. This makes effective deployment on resource-limited devices challenging. This article introduces GRSNet, an ultra-lightweight algorithm. The principal innovation is a new sampling method named golden ratio sampling (GRS), which generates sampling point indices directly using the golden ratio to subsequently locate the corresponding sampling points. This method efficiently extracts representative points from point cloud data and integrates them into deep networks. Leveraging GRS, this study combines the concepts from GhostNet and self-attention mechanisms to develop a feature extraction module dubbed the SA_Ghost Block, forming the core of GRSNet. Comparative experiments with leading algorithms on established point cloud open-source datasets demonstrate that GRSNet achieves superior performance, maintaining only 0.7 M parameters.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2/7934018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2/7934018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2/7934018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
GRSNet: An Ultra-Lightweight Neural Network for 3D Point Cloud Classification and Segmentation
The processing of point cloud data has become a significant area of research in the modern field of perception. Classification and segmentation are critical tasks in autonomous driving, environmental perception, and digital twins. Algorithms that directly extract features from raw point cloud data have simple architectures, but they are constrained by computational demands and limited efficiency. This makes effective deployment on resource-limited devices challenging. This article introduces GRSNet, an ultra-lightweight algorithm. The principal innovation is a new sampling method named golden ratio sampling (GRS), which generates sampling point indices directly using the golden ratio to subsequently locate the corresponding sampling points. This method efficiently extracts representative points from point cloud data and integrates them into deep networks. Leveraging GRS, this study combines the concepts from GhostNet and self-attention mechanisms to develop a feature extraction module dubbed the SA_Ghost Block, forming the core of GRSNet. Comparative experiments with leading algorithms on established point cloud open-source datasets demonstrate that GRSNet achieves superior performance, maintaining only 0.7 M parameters.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.