GRSNet:一种用于三维点云分类和分割的超轻量级神经网络

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zourong Long, Gen Tan, You Wu, Hong Yang, Chao Ding
{"title":"GRSNet:一种用于三维点云分类和分割的超轻量级神经网络","authors":"Zourong Long,&nbsp;Gen Tan,&nbsp;You Wu,&nbsp;Hong Yang,&nbsp;Chao Ding","doi":"10.1049/cdt2/7934018","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The processing of point cloud data has become a significant area of research in the modern field of perception. Classification and segmentation are critical tasks in autonomous driving, environmental perception, and digital twins. Algorithms that directly extract features from raw point cloud data have simple architectures, but they are constrained by computational demands and limited efficiency. This makes effective deployment on resource-limited devices challenging. This article introduces GRSNet, an ultra-lightweight algorithm. The principal innovation is a new sampling method named golden ratio sampling (GRS), which generates sampling point indices directly using the golden ratio to subsequently locate the corresponding sampling points. This method efficiently extracts representative points from point cloud data and integrates them into deep networks. Leveraging GRS, this study combines the concepts from GhostNet and self-attention mechanisms to develop a feature extraction module dubbed the SA_Ghost Block, forming the core of GRSNet. Comparative experiments with leading algorithms on established point cloud open-source datasets demonstrate that GRSNet achieves superior performance, maintaining only 0.7 M parameters.</p>\n </div>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"2025 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2/7934018","citationCount":"0","resultStr":"{\"title\":\"GRSNet: An Ultra-Lightweight Neural Network for 3D Point Cloud Classification and Segmentation\",\"authors\":\"Zourong Long,&nbsp;Gen Tan,&nbsp;You Wu,&nbsp;Hong Yang,&nbsp;Chao Ding\",\"doi\":\"10.1049/cdt2/7934018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The processing of point cloud data has become a significant area of research in the modern field of perception. Classification and segmentation are critical tasks in autonomous driving, environmental perception, and digital twins. Algorithms that directly extract features from raw point cloud data have simple architectures, but they are constrained by computational demands and limited efficiency. This makes effective deployment on resource-limited devices challenging. This article introduces GRSNet, an ultra-lightweight algorithm. The principal innovation is a new sampling method named golden ratio sampling (GRS), which generates sampling point indices directly using the golden ratio to subsequently locate the corresponding sampling points. This method efficiently extracts representative points from point cloud data and integrates them into deep networks. Leveraging GRS, this study combines the concepts from GhostNet and self-attention mechanisms to develop a feature extraction module dubbed the SA_Ghost Block, forming the core of GRSNet. Comparative experiments with leading algorithms on established point cloud open-source datasets demonstrate that GRSNet achieves superior performance, maintaining only 0.7 M parameters.</p>\\n </div>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2/7934018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2/7934018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2/7934018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

点云数据的处理已成为现代感知领域的一个重要研究领域。分类和分割是自动驾驶、环境感知和数字孪生中的关键任务。直接从原始点云数据中提取特征的算法结构简单,但受计算量和效率的限制。这使得在资源有限的设备上进行有效部署变得困难。本文介绍了一种超轻量级算法GRSNet。主要的创新是一种新的采样方法,称为黄金比例采样(GRS),它直接使用黄金比例生成采样点指数,从而定位相应的采样点。该方法有效地从点云数据中提取有代表性的点,并将其整合到深度网络中。本研究利用GRS,将GhostNet的概念与自关注机制相结合,开发了特征提取模块SA_Ghost Block,构成GRSNet的核心。在已建立的点云开源数据集上,与主流算法的对比实验表明,GRSNet算法仅保留0.7 M个参数,性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GRSNet: An Ultra-Lightweight Neural Network for 3D Point Cloud Classification and Segmentation

GRSNet: An Ultra-Lightweight Neural Network for 3D Point Cloud Classification and Segmentation

The processing of point cloud data has become a significant area of research in the modern field of perception. Classification and segmentation are critical tasks in autonomous driving, environmental perception, and digital twins. Algorithms that directly extract features from raw point cloud data have simple architectures, but they are constrained by computational demands and limited efficiency. This makes effective deployment on resource-limited devices challenging. This article introduces GRSNet, an ultra-lightweight algorithm. The principal innovation is a new sampling method named golden ratio sampling (GRS), which generates sampling point indices directly using the golden ratio to subsequently locate the corresponding sampling points. This method efficiently extracts representative points from point cloud data and integrates them into deep networks. Leveraging GRS, this study combines the concepts from GhostNet and self-attention mechanisms to develop a feature extraction module dubbed the SA_Ghost Block, forming the core of GRSNet. Comparative experiments with leading algorithms on established point cloud open-source datasets demonstrate that GRSNet achieves superior performance, maintaining only 0.7 M parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信