基于mof的电催化剂用于水电解、储能和传感:进展和见解

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Pan, Yingying Wang, Sicong Zhang, Dianhui Wang, Qing Li, Huan Pang
{"title":"基于mof的电催化剂用于水电解、储能和传感:进展和见解","authors":"Tao Pan,&nbsp;Yingying Wang,&nbsp;Sicong Zhang,&nbsp;Dianhui Wang,&nbsp;Qing Li,&nbsp;Huan Pang","doi":"10.1002/tcr.202400253","DOIUrl":null,"url":null,"abstract":"<p>Metal-organic frameworks (MOFs) and their derivatives have shown broad application prospects in fields such as water electrolysis, electrochemical energy storage, and sensing due to their high specific surface area, tunable structures, and abundant active sites. This article provides a comprehensive overview of our research group′s recent advancements in developing MOF-based electrocatalysts for Oxygen Evolution Reaction (OER) and Urea Oxidation Reaction (UOR) at anodes, as well as Hydrogen Evolution Reaction (HER) at cathodes during water electrolysis. Furthermore, we have integrated these catalysts into practical applications, including metal-air batteries, lithium-sulfur batteries, and non-enzymatic glucose sensors. To further demonstrate the innovative contributions of our work, we systematically compare it with the advanced work by other groups. Based on these findings and performance benchmarking analyses, we identify critical challenges that must be addressed to advance MOFs-based electrocatalysts toward next-generation energy conversion and sensing.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"25 5","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-Based Electrocatalysts for Water Electrolysis, Energy Storage, and Sensing: Progress and Insights\",\"authors\":\"Tao Pan,&nbsp;Yingying Wang,&nbsp;Sicong Zhang,&nbsp;Dianhui Wang,&nbsp;Qing Li,&nbsp;Huan Pang\",\"doi\":\"10.1002/tcr.202400253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal-organic frameworks (MOFs) and their derivatives have shown broad application prospects in fields such as water electrolysis, electrochemical energy storage, and sensing due to their high specific surface area, tunable structures, and abundant active sites. This article provides a comprehensive overview of our research group′s recent advancements in developing MOF-based electrocatalysts for Oxygen Evolution Reaction (OER) and Urea Oxidation Reaction (UOR) at anodes, as well as Hydrogen Evolution Reaction (HER) at cathodes during water electrolysis. Furthermore, we have integrated these catalysts into practical applications, including metal-air batteries, lithium-sulfur batteries, and non-enzymatic glucose sensors. To further demonstrate the innovative contributions of our work, we systematically compare it with the advanced work by other groups. Based on these findings and performance benchmarking analyses, we identify critical challenges that must be addressed to advance MOFs-based electrocatalysts toward next-generation energy conversion and sensing.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400253\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400253","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属有机骨架(mof)及其衍生物具有高比表面积、结构可调、活性位点丰富等特点,在水电解、电化学储能、传感等领域具有广阔的应用前景。本文综述了本研究组在电解水过程中阳极析氧反应(OER)、尿素氧化反应(UOR)以及阴极析氢反应(HER)的mof基电催化剂的研究进展。此外,我们已经将这些催化剂整合到实际应用中,包括金属空气电池、锂硫电池和非酶葡萄糖传感器。为了进一步展示我们工作的创新性贡献,我们将其与其他小组的先进工作进行了系统的比较。基于这些发现和性能基准分析,我们确定了必须解决的关键挑战,以推动基于mofs的电催化剂向下一代能量转换和传感发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MOF-Based Electrocatalysts for Water Electrolysis, Energy Storage, and Sensing: Progress and Insights

MOF-Based Electrocatalysts for Water Electrolysis, Energy Storage, and Sensing: Progress and Insights

Metal-organic frameworks (MOFs) and their derivatives have shown broad application prospects in fields such as water electrolysis, electrochemical energy storage, and sensing due to their high specific surface area, tunable structures, and abundant active sites. This article provides a comprehensive overview of our research group′s recent advancements in developing MOF-based electrocatalysts for Oxygen Evolution Reaction (OER) and Urea Oxidation Reaction (UOR) at anodes, as well as Hydrogen Evolution Reaction (HER) at cathodes during water electrolysis. Furthermore, we have integrated these catalysts into practical applications, including metal-air batteries, lithium-sulfur batteries, and non-enzymatic glucose sensors. To further demonstrate the innovative contributions of our work, we systematically compare it with the advanced work by other groups. Based on these findings and performance benchmarking analyses, we identify critical challenges that must be addressed to advance MOFs-based electrocatalysts toward next-generation energy conversion and sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信