非等维Fock-Bargmann-Hartogs域间固有全纯映射的刚性

IF 0.8 3区 数学 Q2 MATHEMATICS
Guicong Su, Lei Wang
{"title":"非等维Fock-Bargmann-Hartogs域间固有全纯映射的刚性","authors":"Guicong Su,&nbsp;Lei Wang","doi":"10.1112/blms.70038","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce a novel rigidity theorem that investigates proper holomorphic maps between Fock–Bargmann–Hartogs domains of varying dimensions. Unlike previous studies, this theorem does not impose any restrictions on the codimension. Our main result demonstrates that any such proper holomorphic map <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> can be equivalently represented as <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>k</mi>\n </msqrt>\n <msub>\n <mi>z</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msqrt>\n <mi>k</mi>\n </msqrt>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msup>\n <mi>w</mi>\n <mi>k</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\sqrt {k} z_1,\\ldots, \\sqrt {k} z_n, 0,\\ldots, 0, w^k)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is a positive integer.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1429-1444"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of proper holomorphic maps between nonequidimensional Fock–Bargmann–Hartogs domains\",\"authors\":\"Guicong Su,&nbsp;Lei Wang\",\"doi\":\"10.1112/blms.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce a novel rigidity theorem that investigates proper holomorphic maps between Fock–Bargmann–Hartogs domains of varying dimensions. Unlike previous studies, this theorem does not impose any restrictions on the codimension. Our main result demonstrates that any such proper holomorphic map <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> can be equivalently represented as <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msqrt>\\n <mi>k</mi>\\n </msqrt>\\n <msub>\\n <mi>z</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msqrt>\\n <mi>k</mi>\\n </msqrt>\\n <msub>\\n <mi>z</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>w</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\sqrt {k} z_1,\\\\ldots, \\\\sqrt {k} z_n, 0,\\\\ldots, 0, w^k)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is a positive integer.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1429-1444\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一个新的刚性定理来研究变维的Fock-Bargmann-Hartogs域之间的真全纯映射。与以往的研究不同,这个定理没有对余维数施加任何限制。我们的主要结果证明了任何这样的固有全纯映射F$ F$可以等价地表示为(k z 1,…,K zn, 0,…,0,w K)$ (\sqrt {K} z_1,\ldots, \sqrt {K} z_n, 0,\ldots, 0, w^ K)$,其中k$ k$是一个正整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of proper holomorphic maps between nonequidimensional Fock–Bargmann–Hartogs domains

In this article, we introduce a novel rigidity theorem that investigates proper holomorphic maps between Fock–Bargmann–Hartogs domains of varying dimensions. Unlike previous studies, this theorem does not impose any restrictions on the codimension. Our main result demonstrates that any such proper holomorphic map F $F$ can be equivalently represented as ( k z 1 , , k z n , 0 , , 0 , w k ) $(\sqrt {k} z_1,\ldots, \sqrt {k} z_n, 0,\ldots, 0, w^k)$ , where k $k$ is a positive integer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信