{"title":"关于缆线与对合调和不变量的注解","authors":"Kristen Hendricks, Abhishek Mallick","doi":"10.1112/blms.70050","DOIUrl":null,"url":null,"abstract":"<p>We prove a formula for the involutive concordance invariants of the cabled knots in terms of those of the companion knot and the pattern knot. As a consequence, we show that any iterated cable of a knot with parameters of the form (odd,1) is not smoothly slice as long as either of the involutive concordance invariants of the knot is nonzero. Our formula also gives new bounds for the unknotting number of a cabled knot, which are sometimes stronger than other known bounds coming from knot Floer homology.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1593-1604"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70050","citationCount":"0","resultStr":"{\"title\":\"A note on cables and the involutive concordance invariants\",\"authors\":\"Kristen Hendricks, Abhishek Mallick\",\"doi\":\"10.1112/blms.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a formula for the involutive concordance invariants of the cabled knots in terms of those of the companion knot and the pattern knot. As a consequence, we show that any iterated cable of a knot with parameters of the form (odd,1) is not smoothly slice as long as either of the involutive concordance invariants of the knot is nonzero. Our formula also gives new bounds for the unknotting number of a cabled knot, which are sometimes stronger than other known bounds coming from knot Floer homology.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1593-1604\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70050\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A note on cables and the involutive concordance invariants
We prove a formula for the involutive concordance invariants of the cabled knots in terms of those of the companion knot and the pattern knot. As a consequence, we show that any iterated cable of a knot with parameters of the form (odd,1) is not smoothly slice as long as either of the involutive concordance invariants of the knot is nonzero. Our formula also gives new bounds for the unknotting number of a cabled knot, which are sometimes stronger than other known bounds coming from knot Floer homology.