高拓扑下的希尔顿-米尔诺定理

IF 0.9 3区 数学 Q2 MATHEMATICS
Samuel Lavenir
{"title":"高拓扑下的希尔顿-米尔诺定理","authors":"Samuel Lavenir","doi":"10.1112/blms.70041","DOIUrl":null,"url":null,"abstract":"<p>In this note, we show that the classical theorem of Hilton–Milnor on finite wedges of suspension spaces remains valid in an arbitrary <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-topos. Our result relies on a version of James' splitting proved in [Devalapurkar and Haine, Doc. Math. 26 (2021), 1423–1464] and uses only basic constructions native to any model of <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>-categories.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1468-1481"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70041","citationCount":"0","resultStr":"{\"title\":\"The Hilton–Milnor theorem in higher topoi\",\"authors\":\"Samuel Lavenir\",\"doi\":\"10.1112/blms.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we show that the classical theorem of Hilton–Milnor on finite wedges of suspension spaces remains valid in an arbitrary <span></span><math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-topos. Our result relies on a version of James' splitting proved in [Devalapurkar and Haine, Doc. Math. 26 (2021), 1423–1464] and uses only basic constructions native to any model of <span></span><math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>-categories.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1468-1481\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70041\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70041","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了悬浮空间有限楔上的经典Hilton-Milnor定理在任意∞$\infty$ -拓扑下仍然有效。我们的结果依赖于詹姆斯分裂的一个版本,Devalapurkar和Haine博士证明了这一点。数学。26(2021),1423-1464],只使用任何∞模型的基本结构$\infty$ -categories。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Hilton–Milnor theorem in higher topoi

The Hilton–Milnor theorem in higher topoi

In this note, we show that the classical theorem of Hilton–Milnor on finite wedges of suspension spaces remains valid in an arbitrary $\infty$ -topos. Our result relies on a version of James' splitting proved in [Devalapurkar and Haine, Doc. Math. 26 (2021), 1423–1464] and uses only basic constructions native to any model of $\infty$ -categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信