{"title":"乘积- 1序列的模群的同构问题","authors":"Alfred Geroldinger, Jun Seok Oh","doi":"10.1112/blms.70042","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <annotation>$G_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math> be torsion groups. We prove that the monoids of product-one sequences over <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <annotation>$G_1$</annotation>\n </semantics></math> and over <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math> are isomorphic if and only if the groups <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>1</mn>\n </msub>\n <annotation>$G_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math> are isomorphic. This was known before for abelian groups.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1482-1495"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70042","citationCount":"0","resultStr":"{\"title\":\"On the isomorphism problem for monoids of product-one sequences\",\"authors\":\"Alfred Geroldinger, Jun Seok Oh\",\"doi\":\"10.1112/blms.70042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$G_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$G_2$</annotation>\\n </semantics></math> be torsion groups. We prove that the monoids of product-one sequences over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$G_1$</annotation>\\n </semantics></math> and over <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$G_2$</annotation>\\n </semantics></math> are isomorphic if and only if the groups <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$G_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$G_2$</annotation>\\n </semantics></math> are isomorphic. This was known before for abelian groups.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1482-1495\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70042\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70042","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the isomorphism problem for monoids of product-one sequences
Let and be torsion groups. We prove that the monoids of product-one sequences over and over are isomorphic if and only if the groups and are isomorphic. This was known before for abelian groups.