Kithmee de Silva, Camila Coelho, Jenny Gao, Matthew D. Brooks
{"title":"揭示拟南芥氮素利用与光合作用的调控网络","authors":"Kithmee de Silva, Camila Coelho, Jenny Gao, Matthew D. Brooks","doi":"10.1111/tpj.70211","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen and light availability are well-known to influence photosynthesis, having both individual and synergistic effects. However, the regulatory interactions between these signaling pathways, especially the transcription factors (TFs) that perceive and integrate these cues, remain to be elucidated. Arabidopsis grown in a matrix of nitrogen and light treatments exhibited distinct physiological and transcriptomic responses. Notably, the effect of nitrogen dose on biomass, nitrogen use efficiency, carbon-to-nitrogen ratio, and gene expression was highly dependent on light intensity. Genes differentially expressed across the treatments were enriched for photosynthetic processes, including the pentose-phosphate cycle, light-harvesting, and chlorophyll biosynthesis. TFs coordinating photosynthesis, carbon-to-nitrogen balance, and nitrogen uptake were identified based on motif enrichment, validated binding data, and gene regulatory network analysis. Dynamic light-by-nitrogen responses were found for TFs previously linked to either nitrogen or light signaling, which now emerge as regulatory hubs that integrate these signals. Among these TFs, we identified bZIP and MYB-related family transcription factors as pivotal players in harmonizing photosynthesis, nitrogen assimilation, and light responses. The transcription factors unveiled in this study have the potential to unlock new strategies for optimizing photosynthetic activity and nutrient-use efficiency in plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70211","citationCount":"0","resultStr":"{\"title\":\"Shining light on Arabidopsis regulatory networks integrating nitrogen use and photosynthesis\",\"authors\":\"Kithmee de Silva, Camila Coelho, Jenny Gao, Matthew D. Brooks\",\"doi\":\"10.1111/tpj.70211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitrogen and light availability are well-known to influence photosynthesis, having both individual and synergistic effects. However, the regulatory interactions between these signaling pathways, especially the transcription factors (TFs) that perceive and integrate these cues, remain to be elucidated. Arabidopsis grown in a matrix of nitrogen and light treatments exhibited distinct physiological and transcriptomic responses. Notably, the effect of nitrogen dose on biomass, nitrogen use efficiency, carbon-to-nitrogen ratio, and gene expression was highly dependent on light intensity. Genes differentially expressed across the treatments were enriched for photosynthetic processes, including the pentose-phosphate cycle, light-harvesting, and chlorophyll biosynthesis. TFs coordinating photosynthesis, carbon-to-nitrogen balance, and nitrogen uptake were identified based on motif enrichment, validated binding data, and gene regulatory network analysis. Dynamic light-by-nitrogen responses were found for TFs previously linked to either nitrogen or light signaling, which now emerge as regulatory hubs that integrate these signals. Among these TFs, we identified bZIP and MYB-related family transcription factors as pivotal players in harmonizing photosynthesis, nitrogen assimilation, and light responses. The transcription factors unveiled in this study have the potential to unlock new strategies for optimizing photosynthetic activity and nutrient-use efficiency in plants.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"122 3\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70211\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70211\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70211","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Shining light on Arabidopsis regulatory networks integrating nitrogen use and photosynthesis
Nitrogen and light availability are well-known to influence photosynthesis, having both individual and synergistic effects. However, the regulatory interactions between these signaling pathways, especially the transcription factors (TFs) that perceive and integrate these cues, remain to be elucidated. Arabidopsis grown in a matrix of nitrogen and light treatments exhibited distinct physiological and transcriptomic responses. Notably, the effect of nitrogen dose on biomass, nitrogen use efficiency, carbon-to-nitrogen ratio, and gene expression was highly dependent on light intensity. Genes differentially expressed across the treatments were enriched for photosynthetic processes, including the pentose-phosphate cycle, light-harvesting, and chlorophyll biosynthesis. TFs coordinating photosynthesis, carbon-to-nitrogen balance, and nitrogen uptake were identified based on motif enrichment, validated binding data, and gene regulatory network analysis. Dynamic light-by-nitrogen responses were found for TFs previously linked to either nitrogen or light signaling, which now emerge as regulatory hubs that integrate these signals. Among these TFs, we identified bZIP and MYB-related family transcription factors as pivotal players in harmonizing photosynthesis, nitrogen assimilation, and light responses. The transcription factors unveiled in this study have the potential to unlock new strategies for optimizing photosynthetic activity and nutrient-use efficiency in plants.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.