Pilar Hurtado, Josep Maria Espelta, Luciana Jaime, Jordi Martínez-Vilalta, Manto Samou Kokolaki, Marcus Lindner, Francisco Lloret
{"title":"生物多样性和管理是森林恢复力基础关系网络的核心参与者","authors":"Pilar Hurtado, Josep Maria Espelta, Luciana Jaime, Jordi Martínez-Vilalta, Manto Samou Kokolaki, Marcus Lindner, Francisco Lloret","doi":"10.1111/gcb.70196","DOIUrl":null,"url":null,"abstract":"<p>Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 5","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70196","citationCount":"0","resultStr":"{\"title\":\"Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience\",\"authors\":\"Pilar Hurtado, Josep Maria Espelta, Luciana Jaime, Jordi Martínez-Vilalta, Manto Samou Kokolaki, Marcus Lindner, Francisco Lloret\",\"doi\":\"10.1111/gcb.70196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70196\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70196\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70196","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience
Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.