{"title":"正交几乎复结构及其Nijenhuis张量","authors":"Zizhou Tang, Wenjiao Yan","doi":"10.1112/blms.70044","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we demonstrate that on an almost Hermitian manifold <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>J</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>s</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^{2n}, J, ds^2)$</annotation>\n </semantics></math>, a 2-form <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>=</mo>\n <msup>\n <mi>S</mi>\n <mo>∗</mo>\n </msup>\n <mi>Φ</mi>\n </mrow>\n <annotation>$\\varphi =S^*\\Phi$</annotation>\n </semantics></math>, the pullback of the Kähler form <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> on the twistor bundle over <span></span><math>\n <semantics>\n <msup>\n <mi>M</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msup>\n <annotation>$M^{2n}$</annotation>\n </semantics></math>, is nondegenerate if the squared norm <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>N</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$|N|^2$</annotation>\n </semantics></math> of the Nijenhuis tensor is less than <span></span><math>\n <semantics>\n <mfrac>\n <mn>64</mn>\n <mn>5</mn>\n </mfrac>\n <annotation>$\\frac{64}{5}$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math> or less than 16 when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>. As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mn>6</mn>\n </msup>\n <mo>,</mo>\n <mi>d</mi>\n <msubsup>\n <mi>s</mi>\n <mn>0</mn>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$(S^6, ds_0^2)$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>N</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo><</mo>\n <mfrac>\n <mn>64</mn>\n <mn>5</mn>\n </mfrac>\n </mrow>\n <annotation>$|N|^2<\\frac{64}{5}$</annotation>\n </semantics></math> everywhere.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1512-1523"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal almost complex structure and its Nijenhuis tensor\",\"authors\":\"Zizhou Tang, Wenjiao Yan\",\"doi\":\"10.1112/blms.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we demonstrate that on an almost Hermitian manifold <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>M</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>J</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <msup>\\n <mi>s</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M^{2n}, J, ds^2)$</annotation>\\n </semantics></math>, a 2-form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>S</mi>\\n <mo>∗</mo>\\n </msup>\\n <mi>Φ</mi>\\n </mrow>\\n <annotation>$\\\\varphi =S^*\\\\Phi$</annotation>\\n </semantics></math>, the pullback of the Kähler form <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math> on the twistor bundle over <span></span><math>\\n <semantics>\\n <msup>\\n <mi>M</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n <annotation>$M^{2n}$</annotation>\\n </semantics></math>, is nondegenerate if the squared norm <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n <mi>N</mi>\\n <mo>|</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <annotation>$|N|^2$</annotation>\\n </semantics></math> of the Nijenhuis tensor is less than <span></span><math>\\n <semantics>\\n <mfrac>\\n <mn>64</mn>\\n <mn>5</mn>\\n </mfrac>\\n <annotation>$\\\\frac{64}{5}$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 3$</annotation>\\n </semantics></math> or less than 16 when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n=2$</annotation>\\n </semantics></math>. As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>6</mn>\\n </msup>\\n <mo>,</mo>\\n <mi>d</mi>\\n <msubsup>\\n <mi>s</mi>\\n <mn>0</mn>\\n <mn>2</mn>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S^6, ds_0^2)$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n <mi>N</mi>\\n <mo>|</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <mo><</mo>\\n <mfrac>\\n <mn>64</mn>\\n <mn>5</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$|N|^2<\\\\frac{64}{5}$</annotation>\\n </semantics></math> everywhere.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1512-1523\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70044\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了在一个几乎厄米流形(m2n, J, ds2) $(M^{2n}, J, ds^2)$上,a 2-form φ = S∗Φ $\varphi =S^*\Phi$;在m2n $M^{2n}$上,Kähler形式Φ $\Phi$对扭束的回拉,是非简并的如果Nijenhuis张量的平方范数| N | 2 $|N|^2$小于64 5 $\frac{64}{5}$当N大于或等于3$n\geqslant 3$或当n = 2时小于16 $n=2$。作为结果之一,在标准球(s6)上不存在正交的几乎复杂结构。d s 0 2) $(S^6, ds_0^2)$ with | N | 2 &lt;64 5 $|N|^2<\frac{64}{5}$到处都是。
Orthogonal almost complex structure and its Nijenhuis tensor
In this paper, we demonstrate that on an almost Hermitian manifold , a 2-form , the pullback of the Kähler form on the twistor bundle over , is nondegenerate if the squared norm of the Nijenhuis tensor is less than when or less than 16 when . As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere with everywhere.