通过最优输运,以直径界划分球体的等面积分区

IF 0.8 3区 数学 Q2 MATHEMATICS
Jun Kitagawa, Asuka Takatsu
{"title":"通过最优输运,以直径界划分球体的等面积分区","authors":"Jun Kitagawa,&nbsp;Asuka Takatsu","doi":"10.1112/blms.70045","DOIUrl":null,"url":null,"abstract":"<p>We prove existence of equal area partitions of the unit sphere via optimal transport methods, accompanied by diameter bounds written in terms of Monge–Kantorovich distances. This can be used to obtain bounds on the expectation of the maximum diameter of partition sets, when points are uniformly sampled from the sphere. An application to the computation of sliced Monge–Kantorovich distances is also presented.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1524-1538"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70045","citationCount":"0","resultStr":"{\"title\":\"Equal area partitions of the sphere with diameter bounds, via optimal transport\",\"authors\":\"Jun Kitagawa,&nbsp;Asuka Takatsu\",\"doi\":\"10.1112/blms.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove existence of equal area partitions of the unit sphere via optimal transport methods, accompanied by diameter bounds written in terms of Monge–Kantorovich distances. This can be used to obtain bounds on the expectation of the maximum diameter of partition sets, when points are uniformly sampled from the sphere. An application to the computation of sliced Monge–Kantorovich distances is also presented.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1524-1538\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70045\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过最优输运方法证明了单位球的等面积分区的存在性,并给出了用Monge-Kantorovich距离表示的直径界。当点从球体均匀采样时,这可以用来获得分区集最大直径的期望界。并给出了在计算切Monge-Kantorovich距离中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equal area partitions of the sphere with diameter bounds, via optimal transport

We prove existence of equal area partitions of the unit sphere via optimal transport methods, accompanied by diameter bounds written in terms of Monge–Kantorovich distances. This can be used to obtain bounds on the expectation of the maximum diameter of partition sets, when points are uniformly sampled from the sphere. An application to the computation of sliced Monge–Kantorovich distances is also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信