{"title":"乌尔里希等级的维罗内塞变种和等变实例","authors":"Daniele Faenzi, Victor Pretti","doi":"10.1112/blms.70046","DOIUrl":null,"url":null,"abstract":"<p>We construct Ulrich bundles on Veronese threefolds of arbitrary degree as generic deformations of symmetric squares of equivariant instanton bundles on the projective space, thus classifying the rank of Ulrich bundles on such varieties and proving a conjecture of Costa and Miró-Roig.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1539-1547"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ulrich ranks of Veronese varieties and equivariant instantons\",\"authors\":\"Daniele Faenzi, Victor Pretti\",\"doi\":\"10.1112/blms.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct Ulrich bundles on Veronese threefolds of arbitrary degree as generic deformations of symmetric squares of equivariant instanton bundles on the projective space, thus classifying the rank of Ulrich bundles on such varieties and proving a conjecture of Costa and Miró-Roig.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1539-1547\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70046\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ulrich ranks of Veronese varieties and equivariant instantons
We construct Ulrich bundles on Veronese threefolds of arbitrary degree as generic deformations of symmetric squares of equivariant instanton bundles on the projective space, thus classifying the rank of Ulrich bundles on such varieties and proving a conjecture of Costa and Miró-Roig.