乌尔里希等级的维罗内塞变种和等变实例

IF 0.8 3区 数学 Q2 MATHEMATICS
Daniele Faenzi, Victor Pretti
{"title":"乌尔里希等级的维罗内塞变种和等变实例","authors":"Daniele Faenzi,&nbsp;Victor Pretti","doi":"10.1112/blms.70046","DOIUrl":null,"url":null,"abstract":"<p>We construct Ulrich bundles on Veronese threefolds of arbitrary degree as generic deformations of symmetric squares of equivariant instanton bundles on the projective space, thus classifying the rank of Ulrich bundles on such varieties and proving a conjecture of Costa and Miró-Roig.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1539-1547"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ulrich ranks of Veronese varieties and equivariant instantons\",\"authors\":\"Daniele Faenzi,&nbsp;Victor Pretti\",\"doi\":\"10.1112/blms.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct Ulrich bundles on Veronese threefolds of arbitrary degree as generic deformations of symmetric squares of equivariant instanton bundles on the projective space, thus classifying the rank of Ulrich bundles on such varieties and proving a conjecture of Costa and Miró-Roig.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 5\",\"pages\":\"1539-1547\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70046\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了任意度的Veronese三折上的Ulrich束作为射影空间上等变瞬时束对称平方的一般变形,从而分类了这些变体上的Ulrich束的秩,并证明了Costa和Miró-Roig的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ulrich ranks of Veronese varieties and equivariant instantons

We construct Ulrich bundles on Veronese threefolds of arbitrary degree as generic deformations of symmetric squares of equivariant instanton bundles on the projective space, thus classifying the rank of Ulrich bundles on such varieties and proving a conjecture of Costa and Miró-Roig.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信