Kelsey R. Moore, Theodore M. Present, Antoine Crémière, Manuel Guizar-Sicairos, Mirko Holler, Andrew Barnett, Kristin Bergmann, Joachim Amthor, John Grotzinger
{"title":"白垩纪燧石微化石的同步加速器x射线计算机断层扫描(PXCT)","authors":"Kelsey R. Moore, Theodore M. Present, Antoine Crémière, Manuel Guizar-Sicairos, Mirko Holler, Andrew Barnett, Kristin Bergmann, Joachim Amthor, John Grotzinger","doi":"10.1111/gbi.70019","DOIUrl":null,"url":null,"abstract":"<p>Silicification of microfossils is an important taphonomic process that provides a record of microbial life across a range of environments throughout Earth history. However, questions remain regarding the mechanism(s) by which silica precipitated and preserved delicate organic material and detailed cellular morphologies. Constraining the different mechanisms of silica precipitation and identifying the common factors that allow for microfossil preservation is the key to understanding ancient microbial communities and fossil-preserving mechanisms. Here, we use synchrotron ptychographic X-ray computed tomography (PXCT) as a novel technique to analyze microfossils from the Cretaceous Barra Velha Formation and better characterize their diverse morphologies and preservation styles. Through this technique, we generate 2D and 3D reconstructions that illustrate the microfossils and silica-organic textures at nanometer resolution. At this resolution, we identify previously uncharacterized silica textures and organic-silica relationships that help us relate findings from modern silicifying environments and experimental work to the fossil record. Additionally, we identify primary morphological differences among the microfossils as well as preservational variability that may have been driven by physiological and/or biochemical differences between the different organisms that inhabited the Cretaceous pre-salt basin. These findings help us to better characterize the diversity and complexity of the microbiota in this ancient basin as well as taphonomic processes and biases that may have driven microfossil preservation in this and other silicifying environments throughout Earth history.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70019","citationCount":"0","resultStr":"{\"title\":\"Cretaceous Chert-Hosted Microfossils Visualized With Synchrotron Ptychographic X-Ray Computed Tomography (PXCT)\",\"authors\":\"Kelsey R. Moore, Theodore M. Present, Antoine Crémière, Manuel Guizar-Sicairos, Mirko Holler, Andrew Barnett, Kristin Bergmann, Joachim Amthor, John Grotzinger\",\"doi\":\"10.1111/gbi.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicification of microfossils is an important taphonomic process that provides a record of microbial life across a range of environments throughout Earth history. However, questions remain regarding the mechanism(s) by which silica precipitated and preserved delicate organic material and detailed cellular morphologies. Constraining the different mechanisms of silica precipitation and identifying the common factors that allow for microfossil preservation is the key to understanding ancient microbial communities and fossil-preserving mechanisms. Here, we use synchrotron ptychographic X-ray computed tomography (PXCT) as a novel technique to analyze microfossils from the Cretaceous Barra Velha Formation and better characterize their diverse morphologies and preservation styles. Through this technique, we generate 2D and 3D reconstructions that illustrate the microfossils and silica-organic textures at nanometer resolution. At this resolution, we identify previously uncharacterized silica textures and organic-silica relationships that help us relate findings from modern silicifying environments and experimental work to the fossil record. Additionally, we identify primary morphological differences among the microfossils as well as preservational variability that may have been driven by physiological and/or biochemical differences between the different organisms that inhabited the Cretaceous pre-salt basin. These findings help us to better characterize the diversity and complexity of the microbiota in this ancient basin as well as taphonomic processes and biases that may have driven microfossil preservation in this and other silicifying environments throughout Earth history.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"23 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70019\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70019","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Silicification of microfossils is an important taphonomic process that provides a record of microbial life across a range of environments throughout Earth history. However, questions remain regarding the mechanism(s) by which silica precipitated and preserved delicate organic material and detailed cellular morphologies. Constraining the different mechanisms of silica precipitation and identifying the common factors that allow for microfossil preservation is the key to understanding ancient microbial communities and fossil-preserving mechanisms. Here, we use synchrotron ptychographic X-ray computed tomography (PXCT) as a novel technique to analyze microfossils from the Cretaceous Barra Velha Formation and better characterize their diverse morphologies and preservation styles. Through this technique, we generate 2D and 3D reconstructions that illustrate the microfossils and silica-organic textures at nanometer resolution. At this resolution, we identify previously uncharacterized silica textures and organic-silica relationships that help us relate findings from modern silicifying environments and experimental work to the fossil record. Additionally, we identify primary morphological differences among the microfossils as well as preservational variability that may have been driven by physiological and/or biochemical differences between the different organisms that inhabited the Cretaceous pre-salt basin. These findings help us to better characterize the diversity and complexity of the microbiota in this ancient basin as well as taphonomic processes and biases that may have driven microfossil preservation in this and other silicifying environments throughout Earth history.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.